氧分子在碳纳米颗粒表面吸附的密度泛函理论研究

娄昀璟, 李雪花, 陈景文. 氧分子在碳纳米颗粒表面吸附的密度泛函理论研究[J]. 环境化学, 2015, 34(9): 1587-1593. doi: 10.7524/j.issn.0254-6108.2015.09.2015042201
引用本文: 娄昀璟, 李雪花, 陈景文. 氧分子在碳纳米颗粒表面吸附的密度泛函理论研究[J]. 环境化学, 2015, 34(9): 1587-1593. doi: 10.7524/j.issn.0254-6108.2015.09.2015042201
LOU Yunjing, LI Xuehua, CHEN Jingwen. Oxygen adsorption on carbon nanoparticles:A density functional theory study[J]. Environmental Chemistry, 2015, 34(9): 1587-1593. doi: 10.7524/j.issn.0254-6108.2015.09.2015042201
Citation: LOU Yunjing, LI Xuehua, CHEN Jingwen. Oxygen adsorption on carbon nanoparticles:A density functional theory study[J]. Environmental Chemistry, 2015, 34(9): 1587-1593. doi: 10.7524/j.issn.0254-6108.2015.09.2015042201

氧分子在碳纳米颗粒表面吸附的密度泛函理论研究

  • 基金项目:

    国家自然科学基金(21477016)资助.

Oxygen adsorption on carbon nanoparticles:A density functional theory study

  • Fund Project:
  • 摘要: 基于密度泛函理论,模拟了氧分子在3种典型碳纳米颗粒(富勒烯、碳纳米管和石墨烯)表面的吸附,计算了氧分子垂直和平行吸附于碳纳米颗粒表面的吸附能和吸附距离,确定氧分子在六元环中心平行吸附为最稳定构型.氧分子在3种碳纳米颗粒表面的吸附作用受到碳纳米颗粒的曲率和表面电荷分布的影响,吸附作用力大小顺序为石墨烯 > 富勒烯 > 碳纳米管.电荷分布结果表明,氧分子在碳纳米管、石墨烯表面吸附时无显著的电荷转移,而富勒烯与氧分子之间有部分电荷(0.21e)转移.
  • 加载中
  • [1] Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts[J]. Chemical Society Reviews, 2012, 41(2):782-796
    [2] Li Q, Mahendra S, Lyon D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control:potential applications and implications[J]. Water Research, 2008, 42(18):4591-4602
    [3] Pumera M, Ambrosi A, Bonanni A, et al. Graphene for electrochemical sensing and biosensing[J]. TrAC Trends in Analytical Chemistry, 2010, 29(9):954-965
    [4] Pumera M. Electrochemistry of graphene:New horizons for sensing and energy storage[J]. The Chemical Record, 2009, 9(4):211-223
    [5] Yang W, Ratinac K R, Ringer S P, et al. Carbon nanomaterials in biosensors:should you use nanotubes or graphene?[J]. AngewandteChemie International Edition, 2010, 49(12):2114-2138
    [6] Nazir S, Hussain T, Ayub A, et al. Nanomaterials in combating cancer:therapeutic applications and developments[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2014, 10(1):19-34
    [7] 焦芳, 周国强, 陈春英. 富勒烯化学修饰与生物医学应用研究进展[J]. 生态毒理学报, 2010, 5(4):469-480
    [8] Makharza S, Cirillo G, Bachmatiuk A, et al. Graphene oxide-based drug delivery vehicles:functionalization, characterization, and cytotoxicity evaluation[J]. Journal of Nanoparticle Research, 2013, 15(12):1-26
    [9] Liu Y, Zhao Y, Sun B, et al. Understanding the toxicity of carbon nanotubes[J]. Accounts of Chemical Research, 2012, 46(3):702-713
    [10] Liu S, Zeng T, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide:Membrane and oxidative stress[J]. ACS Nano, 2011, 5(9):6971-6980
    [11] 董婷, 嵇源源, 王剑文. 活性氧参与多壁碳纳米管诱导的RAW264.7细胞毒性[J]. 生态毒理学报, 2013, 8(1):55-60
    [12] 高素莲, 李秀娥, 翟淑梅, 等. 碳纳米管的细胞生物学效应[J]. 环境化学, 2008, 27(6):831-834
    [13] 张礼文, 黄庆国, 毛亮. 碳纳米材料在环境中的转化[J]. 环境化学, 2013, 32(7):1268-1276
    [14] 张亚, 周磊, 曾超, 等. 水体系中官能化多壁碳纳米管光致活性氧研究[J]. 环境化学, 2013, 32(7):1253-1256
    [15] Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622-627
    [16] Qu X, Alvarez P J J, Li Q. Photochemical transformation of carboxylatedmultiwalled carbon nanotubes:Role of reactive oxygen species[J]. Environmental Science & Technology, 2013, 47(24):14080-14088
    [17] Gandra N, Chiu P L, Li W, et al. Photosensitized singlet oxygen production upon two-photon excitation of single-walled carbon nanotubes and their functionalized analogues[J]. The Journal of Physical Chemistry C, 2009, 113(13):5182-5185
    [18] Yan L, Gu Z, Zhao Y. Chemical mechanisms of the toxicological properties of nanomaterials:Generation of intracellular reactive oxygen species[J]. Chemistry-An Asian Journal, 2013, 8(10):2342-2353
    [19] Zou M Y, Zhang J D, Chen J W, et al. Simulating adsorption of organic pollutants on finite (8,0) single-walled carbon nanotubes in water[J]. Environmental Science & Technology, 2012, 46(16):8887-8894
    [20] Vikramaditya T, Sumithra K. New insights in the adsorption of oxygen molecules on single walled carbon nanotubes[J]. Computational Materials Science, 2013, 79:656-662
    [21] Banerjee S, Bhattacharyya D. Electronic properties of nano-graphene sheets calculated using quantum chemical DFT[J]. Computational Materials Science, 2008, 44(1):41-45
    [22] Casolo S, Løvvik O M, Martinazzo R, et al. Understanding adsorption of hydrogen atoms on graphene[J]. The Journal of Chemical Physics, 2009, 130(5):054704
    [23] Tomasi J, Mennucci B, Cances E. The IEF version of the PCM solvation method:An overview of a new method addressed to study molecular solutes at the QM ab initio level[J]. Journal of Molecular Structure-Theochem 1999, 464:211-226
    [24] Robles J, Lopez M J, Alonso J A. Modeling of the functionalization of single-wall carbon nanotubes towards its solubilization in an aqueous medium[J]. European Physical Journal D, 2011, 61:381-388
    [25] Furche F, Ahlrichs R. Adiabatic time-dependent density functional methods for excited state properties[J]. Journal of Chemical Physics, 2002, 117 (74), 33-47.
    [26] Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chemical Reviews, 1988, 88:899-926
    [27] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian Inc, Wallingford CT, 2009.
    [28] Stephens P. Physics and chemistry of fullerenes[M]. New York:Stony Brook, 1993
    [29] 杨旭宇, 王贤保, 李静, 等. 氧化石墨烯的可控还原及结构表征[J]. 高等学校化学学报, 2012, 33(9):1902-1907
    [30] Jiang L, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes[J]. Journal of Colloid and Interface Science, 2003, 260(1):89-94
    [31] Yamakoshi Y, Umezawa N, Ryu A, et al. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines:O2- versus 1O2[J]. Journal of the American Chemical Society, 2003, 125(42):12803-12809
    [32] Liao F, Saitoh Y, Miwa N. Anticancer effects of fullerene[C60] included in polyethylene glycol combined with visible light irradiation through ROS generation and DNA fragmentation on fibrosarcoma cells with scarce cytotoxicity to normal fibroblasts[J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 2011, 19(5):203-216
    [33] Lide D R. CRC handbook of chemistry and physics (90th Edition) [M]. Florida:CRC press,2009
  • 加载中
计量
  • 文章访问数:  1421
  • HTML全文浏览数:  1330
  • PDF下载数:  746
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-04-22
  • 刊出日期:  2015-09-15

氧分子在碳纳米颗粒表面吸附的密度泛函理论研究

  • 1. 大连理工大学环境学院, 工业生态与环境工程教育部重点实验室, 大连, 116024
基金项目:

国家自然科学基金(21477016)资助.

摘要: 基于密度泛函理论,模拟了氧分子在3种典型碳纳米颗粒(富勒烯、碳纳米管和石墨烯)表面的吸附,计算了氧分子垂直和平行吸附于碳纳米颗粒表面的吸附能和吸附距离,确定氧分子在六元环中心平行吸附为最稳定构型.氧分子在3种碳纳米颗粒表面的吸附作用受到碳纳米颗粒的曲率和表面电荷分布的影响,吸附作用力大小顺序为石墨烯 > 富勒烯 > 碳纳米管.电荷分布结果表明,氧分子在碳纳米管、石墨烯表面吸附时无显著的电荷转移,而富勒烯与氧分子之间有部分电荷(0.21e)转移.

English Abstract

参考文献 (33)

目录

/

返回文章
返回