基于MoS2纳米片的荧光生物传感器对饮用水中Hg2+的检测

左显维, 冯治棋, 胡艳琴, 何欣, 金燕子, 韩根亮. 基于MoS2纳米片的荧光生物传感器对饮用水中Hg2+的检测[J]. 环境化学, 2017, 36(1): 167-174. doi: 10.7524/j.issn.0254-6108.2017.01.2016032901
引用本文: 左显维, 冯治棋, 胡艳琴, 何欣, 金燕子, 韩根亮. 基于MoS2纳米片的荧光生物传感器对饮用水中Hg2+的检测[J]. 环境化学, 2017, 36(1): 167-174. doi: 10.7524/j.issn.0254-6108.2017.01.2016032901
ZUO Xianwei, FENG Zhiqi, HU Yanqin, HE Xin, JIN Yanzi, HAN Genliang. A fluorescent biosensor based on MoS2 nanosheets for the detection of Hg2+ in drinking water[J]. Environmental Chemistry, 2017, 36(1): 167-174. doi: 10.7524/j.issn.0254-6108.2017.01.2016032901
Citation: ZUO Xianwei, FENG Zhiqi, HU Yanqin, HE Xin, JIN Yanzi, HAN Genliang. A fluorescent biosensor based on MoS2 nanosheets for the detection of Hg2+ in drinking water[J]. Environmental Chemistry, 2017, 36(1): 167-174. doi: 10.7524/j.issn.0254-6108.2017.01.2016032901

基于MoS2纳米片的荧光生物传感器对饮用水中Hg2+的检测

  • 基金项目:

    甘肃省自然科学基金(1606RJZA143),甘肃省科学院应用研究与开发项目(2014HZ-06,2015JK-09)资助.

A fluorescent biosensor based on MoS2 nanosheets for the detection of Hg2+ in drinking water

  • Fund Project: Supported by the Natural Science Foundation of Gansu Province (1606RJZA143) and the Application Development Project of Gansu Academy of Sciences (2014HZ-06, 2015JK-09).
  • 摘要: 本文利用MoS2纳米片优异的荧光淬灭能力以及其与DNA分子之间的相互作用,构建了一种检测Hg2+的新型荧光生物传感器,并考察了其用于饮用水中微量Hg2+测定的可行性.实验优化了MoS2纳米片浓度、pH值、盐浓度及反应时间等参数对荧光生物传感器性能的影响.在此基础上建立了测定饮用水中微量Hg2+的荧光新方法.在最佳条件下,Hg2+浓度在10-900 nmol·L-1范围内与荧光强度的相对值具有良好的线性关系,检测限为6.3 nmol·L-1.该方法简单、灵敏、特异性强.该方法已成功用于饮用水中微量Hg2+的测定,回收率为95.7%-103.3%.该研究工作将MoS2纳米片的应用拓展到了环境监测领域,这对无机类石墨烯材料的深入研究具有重要意义.
  • 加载中
  • [1] COLEMAN J N, LOTYA M, O'NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017):568-571.
    [2] CHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4):263-275.
    [3] ZHU C, ZENG Z, LI H, et al. Single-Layer MoS2 based nanoprobes for homogeneous detection of biomolecules[J]. Journal of the American Chemical Society, 2013, 135(16):5998-6001.
    [4] ZENG Z, YIN Z, HUANG X, et al. Single-layer semiconducting nanosheets:High-yield preparation and device fabrication[J]. Angewandte Chemie International Edition, 2011, 50(47):11093-11097.
    [5] HUANG J, WEI D, ZHENG P, et al. MoS2 nanosheet functionalized with Cu nanoparticles and its application for glucose detection[J]. Materials Research Bulletin, 2013, 48(11):4544-4547.
    [6] 罗世忠,赵金龙,陈怀银, 等. 薄层二硫化钼-自掺杂聚苯胺纳米复合材料高灵敏检测Pb2+[J]. 分析测试学报, 2016, 35(1):23-27.

    LUO S Z, ZHAO J L,CHEN H Y,et al. High sensitive detection of Pb2+ using thin-layered molybdenum disulfide-self-doped polyaniline nanocomposite[J]. Journal of Instrumental Analysis, 2016, 35(1):23-27(in Chinese).

    [7]
    [8] 赵得瑞, 翟英娇, 李金华, 等. 基于花状MoS2微米材料的葡萄糖生物传感器的制备及其性能研究[J]. 无机材料学报, 2016, 31(2):153-158.

    ZHAO D R, ZHAI Y J, LI J H, et al. Preparation and properties of glucose biosensor based on flower-like MoS2 micrometer material[J]. Journal of Inorganic Materials 2016, 31(2):153-158(in Chinese).

    [9] CHANG K, CHEN W. L-cysteine-assisted synthesis of layered MoS2/Graphene composites with excellent electrochemical performances for lithium ion batteries[J]. ACS Nano, 2011, 5(6):4720-4728.
    [10] MOSES P G, MORTENSEN J J, LUNDQVIST B I, et al. Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS2[J]. The Journal of Chemical Physics, 2009, 130(10):104709.
    [11] XIANG X, SHI J B, HUANG F H, et al. MoS2 nanosheet-based fluorescent biosensor for protein detection via terminal protection of small-molecule-linked DNA and exonuclease Ⅲ-aided DNA recycling amplification[J]. Biosensors and Bioelectronics, 2015, 74:227-232.
    [12] WANG H, KIM Y, LIU H, et al. Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring[J]. Journal of the American Chemical Society, 2009, 131(23):8221-8226.
    [13] 李玄, 王锐, 尹大强. 饮用水汞暴露对小鼠免疫系统的毒性[J]. 环境化学,2014, 33(9):1427-1432.

    LI X, WANG R, YIN D Q. Immunotoxic effects of mercury exposure via drinking water[J]. Environmental Chemisry, 2014,33(9):1427-1432(in Chinese).

    [14] JITARU P, TIREZ K, BRUCKER N D. Panoramic analysis for monitoring trace metals in natural waters by ICP-MS[J]. Atomic Spectroscopy, 2003, 24(1):1-10.
    [15] LI H, ZHAI J, TIAN J, et al. Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury (Ⅱ) ion in aqueous solution[J]. Biosensors and Bioelectronics, 2011, 26(11):4656-4660.
    [16] CIZDZIEL J V, GERSTENBERGER S. Determination of total mercury in human hair and animal fur by combustion atomic absorption spectrometry[J]. Talanta, 2004, 64(4):918-921.
    [17] MIYAKEY, TOGASHI H, TASHIRO M, et al. Mercury (Ⅱ)-mediated formation of thymine-Hg(Ⅱ)-thymine base pairs in DNA duplexes[J]. Journal of the American Chemical Society, 2006, 128(7):2172-2173.
    [18] 陈慧甜,孙清,时国庆.核酸适配体在环境分析中的应用[J]. 环境化学,2015, 34(1):89-96.

    CHEN H T, SUN Q, SHI G Q. Application of aptamers to environmental analysis[J]. Environmental Chemisry, 2015, 34(1):89-96(in Chinese).

    [19] ONO A, TOGASHI H. Highly selective oligonucleotide-based sensor for mercury(Ⅱ) in aqueous solutions[J]. Angewandte Chemie International Edition, 2004, 43(33):4300-4302.
    [20] LI M, WANG Q Y, SHI X D, et al. Detection of mercury(Ⅱ) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surfaceenergy transfer[J]. Analytical Chemistry, 2011, 83(18):7061-7065.
    [21] HE S, SONG B, LI D, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis[J]. Advanced Functional Materials, 2010, 20(3):453-459.
    [22] WANG S, SI S. Aptamer biosensing platform based on carbon nanotube long-range energy transfer for sensitive, selective and multicolor fluorescent heavy metal ion analysis[J]. Analytical Methods, 2013, 5:2947-2953
    [23] ZHANG L, LI T, LI B, et al. Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(Ⅱ) ion[J]. Chemical Communications, 2010, 46(9):1476-1478.
    [24] 曾利红, 何婧琳, 王君霞, 等. 基于单壁碳纳米管的荧光核酸适体传感器对汞离子的检测[J]. 化学传感器, 2013, 33(2):18-22.

    ZENG L H, HE J L, WANG J X, et al. SWNTs based fluorescent aptamer sensors for mercury ion detection[J]. Chemical Sensors, 2013, 33(2):18-22(in Chinese).

    [25] LI H, ZHAI J, TIAN J, et al. Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(Ⅱ) ion in aqueous solution[J]. Biosensors and Bioelectronics, 2011, 26(12):4656-4660.
    [26] 刘萍, 邓承雨, 金振国, 等. 无标记增强型检测Hg2+的荧光DNA传感器[J]. 分析实验室, 2013, 32(5):61-64.

    LIU P, DENG C Y, QUAN Z G, et al. A label-free enhanced fluorescence DNA biosensor for Hg2+ detection[J]. Chinese Journal of Analysis Laboratory, 2013, 32(5):61-64(in Chinese).

    [27] ZHAN S, XU H, ZHANG D, et al. Fluorescent detection of Hg2+ and Pb2+ using GeneFinderTM and an Integrated functional nucleic acid[J]. Biosensors and Bioelectronics, 2015, 72:95-99.
    [28] 薄红艳, 黄绍峰, 曾文静, 等. 基于Hg2+诱导DNA双链形成的荧光增强法检测Hg2+[J]. 分析化学, 2011, 29(12):1893-1897.

    BO H Y, HUANG S F, ZENG W J, et al. Fluorescence detection of Hg2+ Based on Hg2+ induced formation of dsDNA[J]. Chinese Journal of Analytical Chemistry, 2011, 29(12):1893-1897(in Chinese).

    [29] Xi Q, Zhou, D M, Kan Y Y, et al. Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specificnuclease signal amplification[J]. Analytical Chemistry, 2014, 86:1361-1365.
    [30] MAO X, XU Y, XUE Q, et al. Ferromagnetism in exfoliated tungsten disulfide nanosheets[J]. Nanoscale Research Letters, 2013, 8(1):1-6.
    [31] WANG X, NAN F, ZHAO J, et al. A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity[J]. Biosensors and Bioelectronics, 2015, 64:386-391.
    [32] BIAN L, JI X, HU W. A novel single-labeled fluorescent oligonucleotide probe for silver(Ⅰ) ion detection in water, drugs, and food[J]. Journal of Agricultural and Food Chemistry, 2014, 62(21):4870-4877.
    [33] ZHANG X, LI Y, SU H, et al. Highly sensitive and selective detection of Hg2+using mismatched DNA and a molecular light switch complex in aqueous solution[J]. Biosensors and Bioelectronics, 2010, 25(6):1338-1343.
  • 加载中
计量
  • 文章访问数:  1767
  • HTML全文浏览数:  1702
  • PDF下载数:  610
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-03-29
  • 刊出日期:  2017-01-15
左显维, 冯治棋, 胡艳琴, 何欣, 金燕子, 韩根亮. 基于MoS2纳米片的荧光生物传感器对饮用水中Hg2+的检测[J]. 环境化学, 2017, 36(1): 167-174. doi: 10.7524/j.issn.0254-6108.2017.01.2016032901
引用本文: 左显维, 冯治棋, 胡艳琴, 何欣, 金燕子, 韩根亮. 基于MoS2纳米片的荧光生物传感器对饮用水中Hg2+的检测[J]. 环境化学, 2017, 36(1): 167-174. doi: 10.7524/j.issn.0254-6108.2017.01.2016032901
ZUO Xianwei, FENG Zhiqi, HU Yanqin, HE Xin, JIN Yanzi, HAN Genliang. A fluorescent biosensor based on MoS2 nanosheets for the detection of Hg2+ in drinking water[J]. Environmental Chemistry, 2017, 36(1): 167-174. doi: 10.7524/j.issn.0254-6108.2017.01.2016032901
Citation: ZUO Xianwei, FENG Zhiqi, HU Yanqin, HE Xin, JIN Yanzi, HAN Genliang. A fluorescent biosensor based on MoS2 nanosheets for the detection of Hg2+ in drinking water[J]. Environmental Chemistry, 2017, 36(1): 167-174. doi: 10.7524/j.issn.0254-6108.2017.01.2016032901

基于MoS2纳米片的荧光生物传感器对饮用水中Hg2+的检测

  • 1.  甘肃省传感器与传感技术重点实验室, 兰州, 730000;
  • 2.  甘肃省科学院传感技术研究所, 兰州, 730000;
  • 3.  陕西省安康学院化学化工学院, 安康, 725000
基金项目:

甘肃省自然科学基金(1606RJZA143),甘肃省科学院应用研究与开发项目(2014HZ-06,2015JK-09)资助.

摘要: 本文利用MoS2纳米片优异的荧光淬灭能力以及其与DNA分子之间的相互作用,构建了一种检测Hg2+的新型荧光生物传感器,并考察了其用于饮用水中微量Hg2+测定的可行性.实验优化了MoS2纳米片浓度、pH值、盐浓度及反应时间等参数对荧光生物传感器性能的影响.在此基础上建立了测定饮用水中微量Hg2+的荧光新方法.在最佳条件下,Hg2+浓度在10-900 nmol·L-1范围内与荧光强度的相对值具有良好的线性关系,检测限为6.3 nmol·L-1.该方法简单、灵敏、特异性强.该方法已成功用于饮用水中微量Hg2+的测定,回收率为95.7%-103.3%.该研究工作将MoS2纳米片的应用拓展到了环境监测领域,这对无机类石墨烯材料的深入研究具有重要意义.

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回