太湖部分地区碘代三卤甲烷分布特征及其与藻类有机物的关系初探

徐志法, 赵卫佳, 张睿, 赵彦凯, 胡霞林, 尹大强. 太湖部分地区碘代三卤甲烷分布特征及其与藻类有机物的关系初探[J]. 环境化学, 2017, 36(12): 2541-2549. doi: 10.7524/j.issn.0254-6108.2017012007
引用本文: 徐志法, 赵卫佳, 张睿, 赵彦凯, 胡霞林, 尹大强. 太湖部分地区碘代三卤甲烷分布特征及其与藻类有机物的关系初探[J]. 环境化学, 2017, 36(12): 2541-2549. doi: 10.7524/j.issn.0254-6108.2017012007
XU Zhifa, ZHAO Weijia, ZHANG Rui, ZHAO Yankai, HU Xialin, YIN Daqiang. Distribution of iodinated trihalomethanes in part of Taihu Lake and correlation analysis between iodinated trihalomethanes and algal organic matter[J]. Environmental Chemistry, 2017, 36(12): 2541-2549. doi: 10.7524/j.issn.0254-6108.2017012007
Citation: XU Zhifa, ZHAO Weijia, ZHANG Rui, ZHAO Yankai, HU Xialin, YIN Daqiang. Distribution of iodinated trihalomethanes in part of Taihu Lake and correlation analysis between iodinated trihalomethanes and algal organic matter[J]. Environmental Chemistry, 2017, 36(12): 2541-2549. doi: 10.7524/j.issn.0254-6108.2017012007

太湖部分地区碘代三卤甲烷分布特征及其与藻类有机物的关系初探

  • 基金项目:

    国家自然科学基金(21277100,21577103)资助.

Distribution of iodinated trihalomethanes in part of Taihu Lake and correlation analysis between iodinated trihalomethanes and algal organic matter

  • Fund Project: Supported by the National Natural Science Foundation of China (21277100, 21577103).
  • 摘要: 藻类有机物(algal organic matter,AOM)被证实是碘代消毒副产物(iodinated disinfection by-products,I-DBPs)生成的前体有机物,然而真实环境中I-DBPs与AOM的关系还不明确.本文研究了太湖碘代三卤甲烷(iodinated trihalomethanes,I-THMs)的分布特征,并初步分析了地表水中I-THMs与AOM的关系.I-THMs在枯水期与丰水期平均浓度分别是655.9 ng·L-1和134.6 ng·L-1.其中,CHBrI2和CHI3为主要的污染物,而CHCl2I检出相对较低.皮尔森相关性分析表明,CHCl2I、CHClBrI、CHClI2、CHI3等I-THMs均与叶绿素a具有显著正相关性,而CHCl2I、CHBr2I、CHBrI2、CHI3与总磷TP、CHCl2I、CHBr2I与总氮TN均具有显著正相关性;CHCl2I、CHClI2与舟形藻(Navicula sp.)细胞浓度也具有显著正相关,但CHBrI2等与微囊藻(Microcystis sp.),栅藻(Scenedesmus sp.)细胞浓度呈显著负相关(P<0.05).本研究间接表明,真实环境中AOM是I-THMs的一个重要来源.
  • 加载中
  • [1] RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water:A review and roadmap for research[J]. Mutat Research,2007, 636(1/3):178-242.
    [2] RICHARDSON S D, FASANO F, ELLINGTON J J, et al. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water[J]. Environmental Science and Technology,2008, 42(22):8330-8338.
    [3] PLEWA M J, SIMMONS J E, RICHARDSON S D, et al. Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products[J]. Environmental and Molecular Mutagenesis,2010, 51(8-9):871-878.
    [4] JEONG C H, POSTIGO C, RICHARDSON S D, et al. Occurrence and comparative toxicity of haloacetaldehyde disinfection byproducts in drinking water[J]. Environmental Science and Technology,2015, 49(23):13749-13759.
    [5] LIU J Q, ZHANG X R. Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga:Halophenolic DBPs are generally more toxic than haloaliphatic ones[J]. Water Research,2014, 65:64-72.
    [6] YANG M T, ZHANG X R. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete platynereis dumerilii[J]. Environmental Science and Technology,2013, 47(19):10868-10876.
    [7] GOSLAN E H, KRASNER S W, BOWER M, et al. A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland[J]. Water Research,2009, 43(18):4698-4706.
    [8] IOANNOU P, CHARISIADIS P, ANDRA S S, et al. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks[J]. Science of the Total Environment,2016, 543:505-513.
    [9] DING H H, MENG L P, ZHANG H F, et al. Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China[J]. Environmental Science-Processes and Impacts,2013, 15(7):1424-1429.
    [10] 王娟. 碘代类消毒副产物生成特性研究[D]. 西安:长安大学, 2014. WANG J, Study on Formation characteristics of Iodinated Disinfection By-products[D]. Xi'an:Chang'an University, 2014(in Chinese).
    [11] 徐志法, 赵卫佳, 张睿,等. 饮用水厂消毒副产物有机前驱物及碘代三卤甲烷分布调查[J]. 广东化工,2017, 44(4):7-9

    , 11. XU Z F, ZHAO W J, ZHANG R, et al. the Distribution of disinfection by-products organic precursors and iodinated trihalomethanes in drinking water treatment plant[J]. Guangdong Chemical Industry, 2017, 44(4):7-9, 11(in Chinese).

    [12] XU Z F, LI X, HU X L, et al. Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment[J]. Chemosphere,2017, 184:253-260.
    [13] HENDERSON R K, BAKER A, PARSONS S A, et al. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms[J]. Water Research,2008, 42(13):3435-3445.
    [14] ZHOU S Q, ZHU S M, SHAO Y S, et al. Characteristics of C-, N-DBPs formation from algal organic matter:Role of molecular weight fractions and impacts of pre-ozonation[J]. Water Research,2015, 72:381-390.
    [15] ZHEN W, XU B, LIN Y L, et al. A comparison of iodinated trihalomethane formation from iodide and iopamidol in the presence of organic precursors during monochloramination[J]. Chemical Engineering Journal,2014, 257:292-298.
    [16] 刘霞. 太湖蓝藻水华中长期动态及其与相关环境因子的研究[D]. 武汉:华中科技大学, 2012. LIU X. Long-term dynamics of cyanobacteria related to environment factors in Taihu Lake[D]. Wuhan:Huazhong University of Science & Technology, 2012(in Chinese).
    [17] 张强. 太湖饮用水源地水质调查与评价[D]. 无锡:江南大学, 2013. ZHANG Q. Assessment and investigation of water quality in the drinking water-source region of Taihu Lake[D]. Wuxi:Jiangnan University, 2013(in Chinese).
    [18] ZHANG Y, SHI G L, GUO C S, et al. Seasonal variations of concentrations, profiles and possible sources of polycyclic aromatic hydrocarbons in sediments from Taihu Lake, China[J]. Journal of Soils and Sediments,2012, 12(6):933-941.
    [19] ZHAI, S J, HU W P, ZHU Z C. Ecological impacts of water transfers on Lake Taihu from the Yangtze River, China[J]. Ecological Engineering,2010, 36(4):406-420.
    [20] 张路, 范成新, 王建军,等. 太湖草藻型湖区间隙水理化特性比较[J]. 中国环境科学,2004,24(5):45-49.

    ZHANG L, FAN C X, WANG J J, et al. Comparison of phsicochemical characters of pore water in grass/algae type zone in Lake Taihu[J]. China Environmental Science, 2004,24(5):45-49(in Chinese).

    [21] 袁信芳, 施华宏, 王晓蓉太湖着生藻类的时空分布特征[J]. 农业环境科学学报,2006, 25(4):1035-1040.

    YUAN X F, SHI H H, WANG X R, et al. Temporal and spatial distributions of periphytic algae in Taihu Lake[J]. Journal of Agro-Environment Science, 2006, 25(4):1035-1040(in Chinese).

    [22] BAHR C, SCHUMACHER J, ERNST M, et al. SUVA as control parameter for the effective ozonation of organic pollutants in secondary effluent[J]. Water Science and Technology,2007, 55(12):267-274.
    [23] HUA G H, RECKHOW D A, ABUSALLOUT I. correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources[J]. Chemosphere,2015, 130:82-89.
    [24] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science and Technology,2003, 37(20):4702-4708.
    [25] MA S C, GAN Y Q, CHAN B Y, et al. Understanding and exploring the potentials of household water treatment methods for volatile disinfection by-products control:Kinetics, mechanisms, and influencing factors[J]. Journal of Hazardous Materials,2017, 321:509-516.
    [26] ABUSALLOUT I, HUA G H. Photolytic dehalogenation of disinfection byproducts in water by natural sunlight irradiation[J]. Chemosphere,2016, 159:184-192.
    [27] ABUSALLOUT I, HUA G H. Natural solar photolysis of total organic chlorine, bromine and iodine in water[J]. Water Research,2016, 92:69-77.
    [28] JONES C E, and CARPENTER L J. Carpenter Solar photolysis of CH2I2, CH2ICI, and CH2IBr in water, saltwater, and seawater[J]. Environmental Science and Technology,2005, 39(16):6130-6137.
    [29] LUO Q, CHEN X C, WEI Z, et al. Simultaneous and high-throughput analysis of iodo-trihalomethanes, haloacetonitriles, and halonitromethanes in drinking water using solid-phase microextraction/gas chromatography-mass spectrometry:An optimization of sample preparation[J]. Journal of Chromatography A,2014, 1365:45-53.
    [30] MARTION M, MILLS G P, WOELTJEN J, et al. A new source of volatile organoiodine compounds in surface seawater[J]. Geophysical Research Letters,2009, 36(1):329-342.
    [31] MANLEY S L, CUESTA J L. Methyl iodide production from marine phytoplankton cultures[J]. Limnology and Oceanography,1997, 42(1):142-147.
    [32] RICHTER U, WALLACE W R. Production of methyl iodide in the tropical Atlantic Ocean[J]. Geophysical Research Letters,2004, 31(23):203-218.
    [33] 叶琳琳, 史小丽, 吴晓东,等. 西太湖秋季蓝藻水华过后细胞裂解对溶解性有机碳影响[J]. 中国环境科学,2011, 31(1):131-136.

    YE L L, SHI X L, WU X D, et al. The effect of cyanobacteria on dissolved organic carbon post the bloom in autumn in Western Lake Taihu[J]. China Environmental Science, 2011, 31(1):131-136(in Chinese).

    [34] GUO W H, SHAN Y C, YANG X. Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide[J]. Journal of Hazardous Materials,2014, 264:91-97.
    [35] PIVOKONSKY M, SAFARIKOVA J, BARESOVA M, et al. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga[J]. Water Research,2014, 51:37-46.
  • 加载中
计量
  • 文章访问数:  1362
  • HTML全文浏览数:  1302
  • PDF下载数:  314
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-01-20
  • 刊出日期:  2017-12-15
徐志法, 赵卫佳, 张睿, 赵彦凯, 胡霞林, 尹大强. 太湖部分地区碘代三卤甲烷分布特征及其与藻类有机物的关系初探[J]. 环境化学, 2017, 36(12): 2541-2549. doi: 10.7524/j.issn.0254-6108.2017012007
引用本文: 徐志法, 赵卫佳, 张睿, 赵彦凯, 胡霞林, 尹大强. 太湖部分地区碘代三卤甲烷分布特征及其与藻类有机物的关系初探[J]. 环境化学, 2017, 36(12): 2541-2549. doi: 10.7524/j.issn.0254-6108.2017012007
XU Zhifa, ZHAO Weijia, ZHANG Rui, ZHAO Yankai, HU Xialin, YIN Daqiang. Distribution of iodinated trihalomethanes in part of Taihu Lake and correlation analysis between iodinated trihalomethanes and algal organic matter[J]. Environmental Chemistry, 2017, 36(12): 2541-2549. doi: 10.7524/j.issn.0254-6108.2017012007
Citation: XU Zhifa, ZHAO Weijia, ZHANG Rui, ZHAO Yankai, HU Xialin, YIN Daqiang. Distribution of iodinated trihalomethanes in part of Taihu Lake and correlation analysis between iodinated trihalomethanes and algal organic matter[J]. Environmental Chemistry, 2017, 36(12): 2541-2549. doi: 10.7524/j.issn.0254-6108.2017012007

太湖部分地区碘代三卤甲烷分布特征及其与藻类有机物的关系初探

  • 1. 同济大学环境科学与工程学院, 污染控制与资源化研究国家重点实验室, 上海, 200092
基金项目:

国家自然科学基金(21277100,21577103)资助.

摘要: 藻类有机物(algal organic matter,AOM)被证实是碘代消毒副产物(iodinated disinfection by-products,I-DBPs)生成的前体有机物,然而真实环境中I-DBPs与AOM的关系还不明确.本文研究了太湖碘代三卤甲烷(iodinated trihalomethanes,I-THMs)的分布特征,并初步分析了地表水中I-THMs与AOM的关系.I-THMs在枯水期与丰水期平均浓度分别是655.9 ng·L-1和134.6 ng·L-1.其中,CHBrI2和CHI3为主要的污染物,而CHCl2I检出相对较低.皮尔森相关性分析表明,CHCl2I、CHClBrI、CHClI2、CHI3等I-THMs均与叶绿素a具有显著正相关性,而CHCl2I、CHBr2I、CHBrI2、CHI3与总磷TP、CHCl2I、CHBr2I与总氮TN均具有显著正相关性;CHCl2I、CHClI2与舟形藻(Navicula sp.)细胞浓度也具有显著正相关,但CHBrI2等与微囊藻(Microcystis sp.),栅藻(Scenedesmus sp.)细胞浓度呈显著负相关(P<0.05).本研究间接表明,真实环境中AOM是I-THMs的一个重要来源.

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回