池武溪流域岩溶水SO42-的空间变化特征及其来源分析

汪炎林, 周忠发, 田衷珲, 李坡, 张结, 潘艳喜, 曹明达. 池武溪流域岩溶水SO42-的空间变化特征及其来源分析[J]. 环境化学, 2017, 36(12): 2690-2700. doi: 10.7524/j.issn.0254-6108.2017030105
引用本文: 汪炎林, 周忠发, 田衷珲, 李坡, 张结, 潘艳喜, 曹明达. 池武溪流域岩溶水SO42-的空间变化特征及其来源分析[J]. 环境化学, 2017, 36(12): 2690-2700. doi: 10.7524/j.issn.0254-6108.2017030105
WANG Yanlin, ZHOU Zhongfa, TIAN Zhonghui, LI Po, ZHANG Jie, PAN Yanxi, CAO Mingda. Analysis of the spatial variation and sources of SO42- in karst water of Chiwu Revier[J]. Environmental Chemistry, 2017, 36(12): 2690-2700. doi: 10.7524/j.issn.0254-6108.2017030105
Citation: WANG Yanlin, ZHOU Zhongfa, TIAN Zhonghui, LI Po, ZHANG Jie, PAN Yanxi, CAO Mingda. Analysis of the spatial variation and sources of SO42- in karst water of Chiwu Revier[J]. Environmental Chemistry, 2017, 36(12): 2690-2700. doi: 10.7524/j.issn.0254-6108.2017030105

池武溪流域岩溶水SO42-的空间变化特征及其来源分析

  • 基金项目:

    国家自然科学基金(41361081,41301504),贵州省科技计划项目(黔科合G字[2014]4004-2号),贵州省重大应用基础研究项目(黔科合JZ字[2014]200201)和贵州省高层次创新型人才培养计划—"百"层次人才(黔科合平台人才〔2016〕5674)资助.

Analysis of the spatial variation and sources of SO42- in karst water of Chiwu Revier

  • Fund Project: Supported by the National Natural Science Foundation of China(41361081,41301504),Guizhou Province Science and Technology Plan (Guizhou S&T Contract G 2014-4004-2),Majorapplication Based Research Project of Guizhou(Guizhou S&T Contract JZ 2014-200201) and High-level Talents Cultivation Program of Guizhou Provine([2016]5674).
  • 摘要: SO42-作为岩溶地区水化学环境变化的重要指标之一,对研究流域水文地球化学过程的演化以及水资源的保护具有重要的意义.为探究白云岩地区池武溪流域SO42-的分布特征及主要来源,通过运用Piper图、Gibbs图、主成分和灰色关联度方法,对该区域内地下水和地表水共44个水样的水化学相关阴阳离子(Sr2+、Ca2+、Mg2+、Fe2+、SO42-和HCO3-等离子)进行系统性分析,结果表明,池武溪流域水化学类型主要分为两类:HCO3-Ca型、HCO3-Ca·Mg型,部分地下水水点是以SO4-Ca型和SO4-Ca·Mg型为主.在空间分布方面,地表水SO42-浓度空间变化较平缓,SO42-含量较高的区域主要集中在洞穴密集分布的水样点及其邻近区域,在河流交汇处SO42-含量少,最低处仅有9.727 mg·L-1,地下水呈现以石膏晶洞、皮硝洞为中心,向两级逐渐递减的规律,最高值出现在石膏晶洞、皮硝洞附近,高达634.579 mg·L-1.Gibbs图表明,流域内岩溶水中的离子主要来源于岩石风化作用.主成分分析(PCA)结果说明,地表水与地下水存在明显的水力联系且流域内的离子来源于碳酸盐岩与硫酸盐岩的风化作用.灰色关联度排序结果表明,在天青石中SrSO4的溶解和还原过程为主要作用,FeS2、CaMg(CO3)2与石膏的综合作用,对流域内岩溶水的SO42-有着重要的贡献,在地表水中的贡献率分别为0.772、0.701、0.681和0.663;地下水中分别为0.893、0.791、0.799和0.772.
  • 加载中
  • [1] GROSBOIS C, NEGREL P, GRIMAUD D, et al. An overview of dissolved and suspended matter fluxes in the Loire River basin:Naturaland anthropogenic inputs[J]. Aquatic Geochemistry, 2001, 7(2):81-105.
    [2] HUANG G X,SUN J C,ZHANG Y, et al. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area:South China[J]. Science of the Total Environment, 2013, 463-464(6):209-221.
    [3] 班凤梅,潘根兴,蔡炳贵, 等.北京石花洞洞穴滴水中硫酸根浓度的时空变化及其意义[J]. 中国岩溶, 2009, 28(3):243-248.

    BAN F M, PAN G X, CAI B G, et al. Temporal-spatial variation of SO42- concentration of thedrip water and its significance in the Shihua cave, Beijing[J]. Carsologica Sinica, 2009, 28(3):243-248(in Chinese).

    [4] 班凤梅,潘根兴,王新中. 北京石花洞石笋微层层面有机物质的形成时间及机理初探[J]. 第四纪研究, 2005, 25(2):265-268.

    BAN F M,PAN G X,WANG X Z. Tim ing and possible mechanism of organic substances formation in stalagmites laminae from Beijing Shihua Cave[J]. Quaternary Sciences, 2005, 25(2):265-268(in Chinese).

    [5] 闫志为. 硫酸根离子对方解石和白云石溶解度的影响[J]. 中国岩溶, 2008, 27(1):24-31.

    YAN Z W. Influences of SO42- on the solubility of calcite and dolomite[J]. Carsologica Sinica, 2008, 27(1):24-31(in Chinese).

    [6]
    [7] 陈洲,王兮之,李保生, 等.粤北岩溶区星子河流域水化学离子特征及其时空变化分析[J]. 地球与环境, 2014, 42(2):145-156.

    CHEN Z,WANG X Z,LI B S, et al. Analysis of hydrochemical ion characteristics and their temporal and spatial variations in the Karst basin of the Xingzi River,North Guangdong Province[J]. Earth And Environment, 2014, 42(2):145-156(in Chinese).

    [8] ZANG H F, ZHENG XQ, JIA Z X, et al. The impact of hydrogeochemical processes on karst groundwaterquality in arid and semiarid area:a case study in the Liulin spring area, north China[J]. Arabian Journal of Geosciences, 2015, 8(9):6507-6519.
    [9] 刘建,刘丹,刘向远. 基于灰色关联分析的某隧道涌水来源识别[J]. 现代隧道技术, 2007, 44(3):26-29.

    LIU J,LIU D,LIU X Y. Identification of the ources of water in flow into a tunnel based on grey correlation analysis[J]. Modern Tunnelling Technology, 2007, 44(3):26-29(in Chinese).

    [10] 李坡,贺卫,钱治, 等.双河洞地质公园研究[M]. 贵阳:贵州人民出版社, 2008.

    LI P,HE W,QIAN Z, et al.Study on Shuanghe cave geopark[M].Guiyang:Guizhou People's Press(in Chinese).

    [11] 刘平. 贵州绥阳双河洞国家地质公园洞穴基本特征及成因探讨[J]. 贵州地质, 2008, 25(4):302-305.

    LIU P. Basic characters and causation of Shuanghedong National Geological Park in Suiyang,Guizhou[J]. Guizhou Geology, 2008, 25(4):302-305(in Chinese).

    [12] DENG JULONG. Control problems of grey systems[J]. Systems & Control Letters, 1982, 1(5):288-294.
    [13] 刘思峰, 党耀国, 方志耕, 等.灰色系统理论及其应用[M]. 5版. 北京:科学出版社, 2010:169-175. LIU S F, DANG Y G,FANG Z G, et al. Grey system theory and its application[M]. 5th ed. Beijing:Science Press, 2010

    :169-175(in Chinese).

    [14] 贺祥,林振山,刘会玉, 等.基于灰色关联模型对江苏省PM2.5浓度影响因素的分析[J]. 地理学报, 2016, 71(7):1119-1129.

    HE X,LIN ZS,LIU H Y, et al.Analysis of the driving factors of PM2.5 in Jiangsu province based on grey correlation model[J]. Acta Geographica Sinica, 2016, 71(7):1119-1129(in Chinese).

    [15] 袁道先. 中国岩溶学[M]. 北京:地质出版社,1993. YUAN D X. Chinese karst[M].Beijing:Geological Publishing House, 1993(in Chinese).
    [16] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962):1088-1090.
    [17] 安艳玲,吕婕梅,吴起鑫, 等.赤水河流域上游枯水期水化学特征及其影响因素分析[J]. 环境科学与技术, 2015, 38(8):177-122.

    AN Y L,LYU J M,WU Q X, et al. Hydrochemical characteristics of upper Chishui Riverbasin in dry season[J]. Environmental Science &Technology, 2015, 38(8):117-122(in Chinese).

    [18] 李文江,王文科,段磊, 等.新疆克孜勒河流域喀什段水化学特征及成因[J]. 南水北调与水利科技, 2016, 14(6):159-164.

    LI W J,WANG W K,DUAN L, et al.Study of hydrochemical characteristics and genesis in Kashi Reach of Kizil River Basin in Xinjiang[J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(6):159-164(in Chinese).

    [19] 马顺清,李善平,谢智勇, 等.青海大风山天青石矿床地质特征及成因分析[J]. 西北地质, 2012, 45(3):130-140.

    MA S Q,LI S P, XIE Z Y, et al.Characteristics and genetic analysis of celestite deposits in Dafeng Mountain Area,Qinghai[J]. Northwestern Geology, 2012, 45(3):130-140(in Chinese).

    [20] 卢耀如,张凤娥. 硫酸盐岩岩溶及硫酸盐岩与碳酸盐岩复合岩溶:发育机理与工程效应研究[M]. 北京:高等教育出版社, 2007:163-164. LU Y R,ZHANG F E. Study of sulphate rock karst and sulphate-carbonate rocks' compound karst[M]. Beijing:China Higher Education Press, 2007:163

    -164(in Chinese).

    [21] 黄思静,胡作维,邹明亮, 等.四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响[J]. 沉积学报, 2007, 25(6):815-824.

    HUANG S J,HU Z W,ZHOU M L. et al.Influence of sulfate reduction on diagenesis of feixianguan carbonate in Triassic,NE Sichuan basin of China[J]. Acta Sedimentologica Sinica, 2007, 25(6):815-824(in Chinese).

    [22] 邬立,赵璐,罗湘赣. 贵阳市乌当区地下热水水文地球化学过程研究[J]. 工程勘察, 2012, 40(7):50-54.

    WU L,ZHAO L,LUO X G. The study of hydrogeochemical process of geomothalwater in Wudang district,Guiyang City[J]. Geotechnical Investigation & Surveying, 2012, 40(7):50-54(in Chinese).

    [23]
  • 加载中
计量
  • 文章访问数:  1862
  • HTML全文浏览数:  1816
  • PDF下载数:  205
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-03-01
  • 刊出日期:  2017-12-15
汪炎林, 周忠发, 田衷珲, 李坡, 张结, 潘艳喜, 曹明达. 池武溪流域岩溶水SO42-的空间变化特征及其来源分析[J]. 环境化学, 2017, 36(12): 2690-2700. doi: 10.7524/j.issn.0254-6108.2017030105
引用本文: 汪炎林, 周忠发, 田衷珲, 李坡, 张结, 潘艳喜, 曹明达. 池武溪流域岩溶水SO42-的空间变化特征及其来源分析[J]. 环境化学, 2017, 36(12): 2690-2700. doi: 10.7524/j.issn.0254-6108.2017030105
WANG Yanlin, ZHOU Zhongfa, TIAN Zhonghui, LI Po, ZHANG Jie, PAN Yanxi, CAO Mingda. Analysis of the spatial variation and sources of SO42- in karst water of Chiwu Revier[J]. Environmental Chemistry, 2017, 36(12): 2690-2700. doi: 10.7524/j.issn.0254-6108.2017030105
Citation: WANG Yanlin, ZHOU Zhongfa, TIAN Zhonghui, LI Po, ZHANG Jie, PAN Yanxi, CAO Mingda. Analysis of the spatial variation and sources of SO42- in karst water of Chiwu Revier[J]. Environmental Chemistry, 2017, 36(12): 2690-2700. doi: 10.7524/j.issn.0254-6108.2017030105

池武溪流域岩溶水SO42-的空间变化特征及其来源分析

  • 1.  贵州师范大学喀斯特研究院, 贵阳, 550001;
  • 2.  贵州省喀斯特山地生态环境国家重点实验室培育基地, 贵阳, 550001;
  • 3.  国家喀斯特石漠化防治工程技术研究中心, 贵阳, 550001;
  • 4.  贵州省喀斯特洞穴(旅游)资源开发利用工程技术研究中心, 贵阳, 550001
基金项目:

国家自然科学基金(41361081,41301504),贵州省科技计划项目(黔科合G字[2014]4004-2号),贵州省重大应用基础研究项目(黔科合JZ字[2014]200201)和贵州省高层次创新型人才培养计划—"百"层次人才(黔科合平台人才〔2016〕5674)资助.

摘要: SO42-作为岩溶地区水化学环境变化的重要指标之一,对研究流域水文地球化学过程的演化以及水资源的保护具有重要的意义.为探究白云岩地区池武溪流域SO42-的分布特征及主要来源,通过运用Piper图、Gibbs图、主成分和灰色关联度方法,对该区域内地下水和地表水共44个水样的水化学相关阴阳离子(Sr2+、Ca2+、Mg2+、Fe2+、SO42-和HCO3-等离子)进行系统性分析,结果表明,池武溪流域水化学类型主要分为两类:HCO3-Ca型、HCO3-Ca·Mg型,部分地下水水点是以SO4-Ca型和SO4-Ca·Mg型为主.在空间分布方面,地表水SO42-浓度空间变化较平缓,SO42-含量较高的区域主要集中在洞穴密集分布的水样点及其邻近区域,在河流交汇处SO42-含量少,最低处仅有9.727 mg·L-1,地下水呈现以石膏晶洞、皮硝洞为中心,向两级逐渐递减的规律,最高值出现在石膏晶洞、皮硝洞附近,高达634.579 mg·L-1.Gibbs图表明,流域内岩溶水中的离子主要来源于岩石风化作用.主成分分析(PCA)结果说明,地表水与地下水存在明显的水力联系且流域内的离子来源于碳酸盐岩与硫酸盐岩的风化作用.灰色关联度排序结果表明,在天青石中SrSO4的溶解和还原过程为主要作用,FeS2、CaMg(CO3)2与石膏的综合作用,对流域内岩溶水的SO42-有着重要的贡献,在地表水中的贡献率分别为0.772、0.701、0.681和0.663;地下水中分别为0.893、0.791、0.799和0.772.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回