流溪河流域地下水水化学时空特征及源辨析

王卓微, 赵新锋, 庞园, 李绍恒, 龙悦敏, 高磊, 张恺, 陈建耀, 嵇泽军. 流溪河流域地下水水化学时空特征及源辨析[J]. 环境化学, 2017, 36(12): 2701-2710. doi: 10.7524/j.issn.0254-6108.2017032306
引用本文: 王卓微, 赵新锋, 庞园, 李绍恒, 龙悦敏, 高磊, 张恺, 陈建耀, 嵇泽军. 流溪河流域地下水水化学时空特征及源辨析[J]. 环境化学, 2017, 36(12): 2701-2710. doi: 10.7524/j.issn.0254-6108.2017032306
WANG Zhuowei, ZHAO Xinfeng, PANG Yuan, LI Shaoheng, LONG Yuemin, GAO Lei, ZHANG Kai, CHEN Jianyao, JI Zejun. Spatial and seasonal geochemical and stable isotopic characteristics of groundwater associated with flow system and source identification in Liuxi River catchment[J]. Environmental Chemistry, 2017, 36(12): 2701-2710. doi: 10.7524/j.issn.0254-6108.2017032306
Citation: WANG Zhuowei, ZHAO Xinfeng, PANG Yuan, LI Shaoheng, LONG Yuemin, GAO Lei, ZHANG Kai, CHEN Jianyao, JI Zejun. Spatial and seasonal geochemical and stable isotopic characteristics of groundwater associated with flow system and source identification in Liuxi River catchment[J]. Environmental Chemistry, 2017, 36(12): 2701-2710. doi: 10.7524/j.issn.0254-6108.2017032306

流溪河流域地下水水化学时空特征及源辨析

  • 基金项目:

    国家自然科学基金(41371055,41611140112),广州水务局科技项目(0835-1501224N0781,GZSW1451S/YD15G0320),广东省水资源节约与保护专项资金(2015年度),中央高校基本业务费(171gpy40),广东省自然科学基金(2017A030310309)和2015年广东省水利科技创新项目(2015-21)资助.

Spatial and seasonal geochemical and stable isotopic characteristics of groundwater associated with flow system and source identification in Liuxi River catchment

  • Fund Project: Supported by the National Natural Science Foundation (41371055,41611140112), Scientific and Technological Project of Guangzhou Water Authority (0835-1501224N0781,GZSW1451S/YD15G0320), Project of Water Resources Conservation and Protection Project of Guangdong Province (2015),Fundamental Research Funds for the Central Universities(171gpy40), Natural Science Foundation of Guangdong Province (2017A030310309) and Project of WaterConservancy Scientific and Technological Innovation of Guangdong Province(2015-21).
  • 摘要: 流溪河承担了广州市白云区供水的重任,流域内的地下水作为应急水源具有重要的战略意义和生态维持作用.为合理开发利用流溪河流域地下水,了解地下水的形成及其离子的迁移和转化规律,分别于2015年8月和12月共采集90个地下水水样,通过分析地下水化学特征、稳定同位素D和18O分布规律,并利用Gibbs分布图和相关性分析揭示旱季和雨季的地下水化学时空分布特征、地下水及离子来源.结果表明,研究区地下水主要受降水补给.空间上,上游区受人类活动影响比中下游区小,从上游到下游区,水化学类型总体从Ca-HCO3型和Ca-Na-HCO3型向Ca-Na-HCO3-Cl型、Ca-Na-Cl-HCO3型和Na-Ca-Cl-HCO3型转变,地层的岩性对于地下水类型影响较大;时间上,水化学特征季节性差异不显著.流域内主离子的来源主要为岩石风化,Ca2+、Mg2+、Na+与HCO3-的来源以碳酸盐岩和硅酸盐岩风化为主,其中,碳酸盐岩的风化占主导地位;NO3-和Cl-主要来自人类生活污染的输入,NH4+ 与TP主要来源于面源污染.
  • 加载中
  • [1] 宋刚, 汤泽平, 陈迪云, 等. 广州市供水水源面临的问题和对策[J]. 环境科学与技术, 2010, 33(3):184-188.

    SONG G, TANG Z P, CHEN D Y, et al. Water supply sources in Guangzhou City:Problems and countermeasures[J]. Environmental Science & Technology, 2010, 33(3):184-188(in Chinese).

    [2] 张晓健. 松花江和北江水污染事件中的城市供水应急处理技术[J]. 给水排水, 2006, 32(6):6-12.

    ZHANG X J. Emergent drinking water treatment in water pollution accidents in Songhuajiang River and Beijiang River[J]. Water & Wastewater Engineering, 2006, 32(6):6-12(in Chinese).

    [3] 罗秋香. 广西重金属污染监测与防治初探——以龙江, 贺江水污染事件为例[J]. 广西师范学院学报:自然科学版, 2014, 31(1):101-104.

    LUO Q X. Monitoring and control of heavy metal pollution in Guangxi——a case study of water pollution events in Longjiang and Hejiang River[J]. Jouranal of Guangxi Teachers Education University:Natural Science Edition, 2014, 31(1):101-104(in Chinese).

    [4] 区域水文地质普查报告[R]. 广东省地质局, 1981. Regional hydrogeological survey report[R]. Guangdong Geological Bureau, 1981(in Chinese).
    [5] 陈慧川. 珠江三角洲地区地下水开发利用现状分析与建议[J]. 地下水, 2011, 33(2):38-40.

    CHEN H C. Analysis and suggestions on the development and utilization of groundwater in the Pearl River Delta[J]. Groundwater, 2011, 33(2):38-40(in Chinese).

    [6] EPSTEIN S, Mayeda T K. Variations of the 18O/16O ratio in natural waters[J]. Geochim Cosmochim Acta, 1953, 4(213):1702-1703.
    [7] FRIEDMAN I. Deuterium content of natural waters and other substances[J]. Geochimica et Cosmochimica Acta, 1953, 4(1-2):89-103.
    [8] CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465):1702-1703.
    [9] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962):1088-1090.
    [10] SALEM Z E, ATWIA M G, El-HORINY M M. Hydrogeochemical analysis and evaluation of groundwater in the reclaimed small basin of Abu Mina, Egypt[J]. Hydrogeology Journal, 2015, 23(8):1781-1797.
    [11] GUPTA S, MAHATO A, ROY P, et al. Geochemistry of groundwater, Burdwan District, West Bengal, India[J]. Environmental Geology, 2008, 53(6):1271-1282.
    [12] ABDESSELEM K, AZEDINE H, LYNDA C. Groundwater hydrochemistry and effects of anthropogenic pollution in Béchar City (SW Algeria)[J]. Desalination and Water Treatment, 2016, 57(30):14034-14043.
    [13] 温小虎, 仵彦卿, 苏建平, 等. 额济纳盆地地下水盐化特征及机理分析[J]. 中国沙漠, 2006, 26(5):836-841.

    WHEN X H, WU Y Q, SU J P, et al. Groundwater salinization characteristics and mechanism in Ejin Basin[J]. Journal of Desert Research, 2006, 26(5):836-841(in Chinese).

    [14] 孙一博, 刘朋飞, 王文科, 等. 渭河流域地下水的水化学特征及形成机制[J]. 南水北调与水利科技, 2016, 14(2):152-158.

    SUN Y B, LIU P F, WANG W K, et al. Chemical characteristics and formation mechanism of groundwater in Wei River Basin[J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(2):152-158(in Chinese).

    [15] KILHAM P. Mechanisms controlling the chemical composition of lakes and rivers:Data from Africa[J]. Limnol Oceanogr, 1990, 35(1):80-83.
    [16] 庞园, 吕文菲. 广州市地下水资源调查评价及其管理对策[J]. 人民珠江, 2014, 35(2):27-31.

    PANG Y, LV W F. The investigation and evaluation of groundwater resources and management countermeasures of Guangzhou[J]. Pearl River, 2014, 35(2):27-31(in Chinese).

    [17] 章光新, 邓伟, 何岩, 等. 中国东北松嫩平原地下水水化学特征与演变规律[J]. 水科学进展, 2006, 17(1):20-28.

    ZHANG G X, DENG W, HE Y, et al. Hrdrochmical characteristics and evolution laws of groundwater in Songnen Plain, Northeast China[J]. Advances in Water Science, 2006, 17(1):20-28(in Chinese).

    [18] 李向全, 侯新伟, 周志超, 等. 太原盆地地下水系统水化学特征及形成演化机制[J]. 现代地质, 2009, 23(1):1-8

    LI X Q, HOU X W, ZHOU Z C, et al. Hydrogeochemical characteristics and formation evolutional mechanism of the groundwater systems in the Taiyuan Basin[J]. Geoscience, 2009, 23(1):1-8(in Chinese).

    [19] 安乐生, 赵全升, 叶思源, 等. 黄河三角洲浅层地下水化学特征及形成作用[J]. 环境科学, 2012, 33(2):370-378.

    AN L S, ZHAO Q S, YE S Y, et al. Hydrochemical characteristics and formation mechanism of shallow groundwater in the Yellow River Delta[J]. Environmental Science, 2012, 33(2):370-378(in Chinese).

    [20] 朱海勇, 陈永金, 刘加珍, 等. 塔里木河中下游地下水化学及其演变特征分析[J]. 干旱区地理, 2013, 36(1):8-18.

    ZHU H Y, CHEN Y J, LIU J Z, et al. Variation and evolution of groundwater chemistry in the middle and lower reaches of the Tarim River[J]. Arid Land Geography, 2013, 36(1):8-18(in Chinese).

    [21] 陈绮,庞园. 两种水质评价方法在广州市从化区地下水水质评价中的应用[J]. 人民珠江, 2016, 37(7):86-89.

    CHEN Q, PANG Y. Application of two kinds of wter quality evaluation methods for groundwater of Conghua District in Guangzhou City[J]. Pearl River, 2016, 37(7):86-89(in Chinese).

    [22] 周光益, 田大伦, 杨乐苏, 等. 广州流溪河降水化学成分及其海洋源分析[J]. 生态学报, 2009, 29(9):4924-4933.

    ZHOU G Y, TIAN D L, YANG L S, et al. Chemical composition of precipitation and its marine source at Liuxihe of Guangzhou[J]. Acta Ecologica Sinica, 2009, 29(9):4924-4933(in Chinese).

    [23] 魏复盛, 毕彤, 齐文启, 等. 水和废水检测分析方法(第四版)[M]. 北京:中国环境科学出版社, 2002. WEI F S, BI T, QI W Q, et al. Water and wastewater monitoring analysis method″ (fourth edition)[M]. Beijing:China Environmental Science Press, 2002(in Chinese).
    [24] 沈照理.水文地球化学基础[M].北京:地质出版社,1993. SHEN Z L. Hydrogeochemistry Basis[M]. Beijing:Geological Publishing House. 1993(in Chinese).
    [25] 陶贞, 高全洲. 珠江三角洲城市雨水的化学组成及其成因探讨[J]. 生态环境学报, 2012, 21(3):475-480.

    TAO Z, GAO Q Z. Chemical composition and its origin of urban rainwater in the Pearl River Delta[J]. Ecology and Environmental Sciences, 2012, 21(3):475-480(in Chinese).

    [26] DALAI T K, KRISHNASWAMI S, SARIN M M. Major ion chemistry in the headwaters of the Yamuna river system:Chemical weathering, its temperature dependence and CO2 consumption in the Himalaya[J]. Geochimica et Cosmochimica Acta, 2002, 66(19):3397-3416.
    [27] LANG Y C, LIU C Q, ZHAO Z Q, et al. Geochemistry of surface and ground water in Guiyang, China:Water/rock interaction and pollution in a karst hydrological system[J]. Applied Geochemistry, 2006, 21(6):887-903.
    [28] KRAPAC I G, DEY W S, ROY W R, et al. Impacts of swine manure pits on groundwater quality[J]. Environmental Pollution, 2002, 120(2):475-492.
    [29] KARR J D, SHOWERS W J, JENNINGS G D. Low-level nitrate export from confined dairy farming detected in North Carolina streams using δ15N[J]. Agriculture, Ecosystems & Environment, 2003, 95(1):103-110.
    [30] 赵新锋, 陈建耀, 唐常源, 等. 珠江三角洲小流域地下水化学特征及演化规律[J]. 生态环境, 2007, 16(6):1620-1626.

    ZHAO X F, CHEN J Y, TANG C Y, et al. Hydrochemical characteristics and evolution of groundwater in a small catchment of Pearl River Delta[J]. Ecology and Environment, 2007, 16(6):1620-1626(in Chinese).

    [31] 温小虎,仵彦卿,常娟,等. 黑河流域水化学空间分异特征分析[J]. 干旱区研究,2004, 24(1):1-6.

    WEN X H, WU Y Q, CHANG J, et al. Analysis on the spatial differentiation of hydrochemical characteristics in the Heihe River Watershed[J]. Arid Zone Research, 2004, 24(1):1-6(in Chinese).

    [32] 张琳, 陈立, 刘君, 等. 香港地区大气降水的D和18O同位素研究[J]. 生态环境学报, 2009, 18(2):572-577.

    ZHANG L, CHEN L, LIU J, et al. D and 18O Isotopes in Atmospheric Precipitation in Hong Kong Area[J]. Ecology and Environmental Sciences, 2009, 18(2):572-577(in Chinese).

    [33] 周嘉欣, 丁永建, 曾国雄, 等. 疏勒河上游地表水水化学主离子特征及其控制因素[J]. 环境科学, 2014, 35(9):3315-3324.

    ZHOU J X, DING Y J, ZENG G X, et al. Major ion chemistry of surface water in the upper reach of Shule River Basin and the possible controls[J]. Environmental Science, 2014, 35(9):3315-3324(in Chinese).

    [34] 张芳,李发东,李静,等.德州引黄灌区主要河系水化学空间特征分析[J].中国生态农业学报,2013, 21(4):487-493.

    ZHANG F, LI F D, LI J, et al. Hydrochemical characteristics of surface water in main rivers of the irrigation districts in the downstream of Yellow River[J]. Chinese Journal of Eco-Agriculture, 2013, 21(4):487-493(in Chinese).

    [35] KARRO E, MARANDI A, VAIKMÄE R. The origin of increased salinity in the Cambrian-Vendian aquifer system on the Kopli Peninsula, northern Estonia[J]. Hydrogeology Journal, 2004, 12(4):424-435.
    [36] MEYBECK M. Atmospheric inputs and river transport of dissolved substances[J]. Dissolved Loads of Rivers and Surface Water Quantity/Quality Relationships, 1983, 141(141):173-192.
    [37] GROSBOIS C, NÉGREL P, FOUILLAC C, et al. Dissolved load of the Loire River:Chemical and isotopic characterization[J]. Chemical Geology, 2000, 170(1):179-201.
    [38] 谢丽纯, 陈建耀, 董林垚, 等. 珠江三角洲滨海小流域离子化学特征及来源分析[J]. 热带地理, 2011, 31(2):138-145.

    XIE L C, CHEN J Y, DONG L Y, et al. Ion chemistry and acid precipitation in a coastal watershed in the Pearl River Delta[J]. Tropical Geography, 2011, 31(2):138-145(in Chinese).

    [39] DATTA P S, TYAGI S K. Major ion chemistry of groundwater in Delhi area:Chemical weathering processes and groundwater flow regime[J]. Journal-Geological Society of India, 1996, 47(2):179-188.
    [40] DUTTA S, REKHA GOGOI R, KHANIKAR L, et al. Assessment of hydrogeochemistry and water quality index (WQI) in some wetlands of the Brahmaputra valley, Assam, India[J]. Desalination and Water Treatment, 2016, 57(57):27614-27626.
    [41] XU Z, LIU C Q. Chemical weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau, Southwest China[J]. Chemical Geology, 2007, 239(1):83-95.
    [42]
  • 加载中
计量
  • 文章访问数:  1429
  • HTML全文浏览数:  1353
  • PDF下载数:  188
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-03-23
  • 刊出日期:  2017-12-15
王卓微, 赵新锋, 庞园, 李绍恒, 龙悦敏, 高磊, 张恺, 陈建耀, 嵇泽军. 流溪河流域地下水水化学时空特征及源辨析[J]. 环境化学, 2017, 36(12): 2701-2710. doi: 10.7524/j.issn.0254-6108.2017032306
引用本文: 王卓微, 赵新锋, 庞园, 李绍恒, 龙悦敏, 高磊, 张恺, 陈建耀, 嵇泽军. 流溪河流域地下水水化学时空特征及源辨析[J]. 环境化学, 2017, 36(12): 2701-2710. doi: 10.7524/j.issn.0254-6108.2017032306
WANG Zhuowei, ZHAO Xinfeng, PANG Yuan, LI Shaoheng, LONG Yuemin, GAO Lei, ZHANG Kai, CHEN Jianyao, JI Zejun. Spatial and seasonal geochemical and stable isotopic characteristics of groundwater associated with flow system and source identification in Liuxi River catchment[J]. Environmental Chemistry, 2017, 36(12): 2701-2710. doi: 10.7524/j.issn.0254-6108.2017032306
Citation: WANG Zhuowei, ZHAO Xinfeng, PANG Yuan, LI Shaoheng, LONG Yuemin, GAO Lei, ZHANG Kai, CHEN Jianyao, JI Zejun. Spatial and seasonal geochemical and stable isotopic characteristics of groundwater associated with flow system and source identification in Liuxi River catchment[J]. Environmental Chemistry, 2017, 36(12): 2701-2710. doi: 10.7524/j.issn.0254-6108.2017032306

流溪河流域地下水水化学时空特征及源辨析

  • 1.  中山大学地理科学与规划学院, 广州, 510275;
  • 2.  珠海市环境保护监测站, 珠海, 519000;
  • 3.  广州市水务科学研究所, 广州, 510220;
  • 4.  中山大学地理科学与规划学院, 广东省城市化与地理 环境空间模拟重点实验室, 广州, 510275;
  • 5.  中国电建集团昆明勘测设计研究院有限公司, 昆明, 650051
基金项目:

国家自然科学基金(41371055,41611140112),广州水务局科技项目(0835-1501224N0781,GZSW1451S/YD15G0320),广东省水资源节约与保护专项资金(2015年度),中央高校基本业务费(171gpy40),广东省自然科学基金(2017A030310309)和2015年广东省水利科技创新项目(2015-21)资助.

摘要: 流溪河承担了广州市白云区供水的重任,流域内的地下水作为应急水源具有重要的战略意义和生态维持作用.为合理开发利用流溪河流域地下水,了解地下水的形成及其离子的迁移和转化规律,分别于2015年8月和12月共采集90个地下水水样,通过分析地下水化学特征、稳定同位素D和18O分布规律,并利用Gibbs分布图和相关性分析揭示旱季和雨季的地下水化学时空分布特征、地下水及离子来源.结果表明,研究区地下水主要受降水补给.空间上,上游区受人类活动影响比中下游区小,从上游到下游区,水化学类型总体从Ca-HCO3型和Ca-Na-HCO3型向Ca-Na-HCO3-Cl型、Ca-Na-Cl-HCO3型和Na-Ca-Cl-HCO3型转变,地层的岩性对于地下水类型影响较大;时间上,水化学特征季节性差异不显著.流域内主离子的来源主要为岩石风化,Ca2+、Mg2+、Na+与HCO3-的来源以碳酸盐岩和硅酸盐岩风化为主,其中,碳酸盐岩的风化占主导地位;NO3-和Cl-主要来自人类生活污染的输入,NH4+ 与TP主要来源于面源污染.

English Abstract

参考文献 (42)

返回顶部

目录

/

返回文章
返回