乙醇水蒸气重整制氢催化剂的研究进展

梅占强, 何素芳, 陈柯臻, 陈然, 陆继长, 罗永明. 乙醇水蒸气重整制氢催化剂的研究进展[J]. 环境化学, 2017, 36(10): 2126-2139. doi: 10.7524/j.issn.0254-6108.2017030702
引用本文: 梅占强, 何素芳, 陈柯臻, 陈然, 陆继长, 罗永明. 乙醇水蒸气重整制氢催化剂的研究进展[J]. 环境化学, 2017, 36(10): 2126-2139. doi: 10.7524/j.issn.0254-6108.2017030702
MEI Zhanqiang, HE Sufang, CHEN Kezhen, CHEN Ran, LU Jichang, LUO Yongming. The development of catalysts for hydrogen production by ethanol steam reforming[J]. Environmental Chemistry, 2017, 36(10): 2126-2139. doi: 10.7524/j.issn.0254-6108.2017030702
Citation: MEI Zhanqiang, HE Sufang, CHEN Kezhen, CHEN Ran, LU Jichang, LUO Yongming. The development of catalysts for hydrogen production by ethanol steam reforming[J]. Environmental Chemistry, 2017, 36(10): 2126-2139. doi: 10.7524/j.issn.0254-6108.2017030702

乙醇水蒸气重整制氢催化剂的研究进展

  • 基金项目:

    国家自然科学基金(2166060141)资助.

The development of catalysts for hydrogen production by ethanol steam reforming

  • Fund Project: Supported by the National Natural Science Foundation of China(2166060141).
  • 摘要: 氢能源是清洁新能源的重要研究方面,被认为具有广泛的应用前景.乙醇水蒸气重整制氢是氢能源开发中的研究热点,而催化剂的研制及应用至关重要.基于此,论文综述了近年来国内外催化剂载体与催化剂活性组分的研究进展.从贵金属催化剂载体与非贵金属催化剂载体两个方面阐述了单一组分载体的优劣,同时为了弥补单一组分载体的不足,本文也对催化剂载体的改性进行了总结.就催化剂的活性组分而言,本文概述了一些常见的单一活性组分的研究,并详细叙述了第二活性组分加入的必要性.最终对乙醇水蒸气重整制氢催化剂的研究方向进行了展望.
  • 加载中
  • [1] DEBABRATA D, NEJAT V. Hydrogen production by biological processes:A survey of literature[J]. International Journal of Hydrogen Energy, 2001, 26(1):13-28.
    [2] TRANE R, DAHL S, SKJфTH-RASMUSSEN M S, et al. Catalytic steam reforming of bio-oil[J]. International Journal of Hydrogen Energy, 2012, 37(8):6447-6472.
    [3] CAI W J, PISCINA P R, GABROWSKA K, et al. Hydrogen production from oxidative steam reforming of bio-butanol over CoIr-based catalysts[J]:Effect of the support. Bioresource Technology, 2013, 128(128C):467-471.
    [4] TANKSALE A, BELTRAMINI J N, LU G Q M. A review of catalytic hydrogen production processes from biomass[J]. Renewable & Sustainable Energy Reviews, 2010, 14(1):166-182.
    [5] MARIANA N B, MANUEL F G, LUIS A A, et al. Co catalysts modified by rare earths (La, Ce or Pr) for hydrogen production from ethanol[J]. International Journal of Hydrogen Energy, 2014, 39(16):8712-8719.
    [6] AUGUSTO B L, COSTA L O O, NORONHA F B, et al. Ethanol reforming over Ni/CeGd catalysts with low Ni content[J]. International Journal of Hydrogen Energy], 2012, 37(17):12258-12270.
    [7] MATTOS L V, JACOBS G, DAVIS B H, et al. Production of hydrogen from ethanol:Review of reaction mechanism and catalyst deactivation[J]. Chemical Reviews, 2012, 112(7):4094-4123.
    [8] HARYANTO A, FERNANDO S, MURALI N, et al. Current status of hydrogen production techniques by steam reforming of ethanol:A review[J]. Energy Fuels, 2005, 19(5), 2098-2106.
    [9] VAIDYA P D, RODRIGUES A E. Insight into steam reforming of ethanol to produce hydrogen for fuel cells[J]. Chemical Engineering Journal, 2006, 117(1):39-49.
    [10] HE S Y, HE S F, ZHANG L, et al. Hydrogen production by ethanol steam reforming over Ni/SBA-15 mesoporous catalysts:Effect of Au addition[J]. Catalysis Today, 2015, 258:162-168.
    [11] MENG NI, LEUNG D Y C, LEUNG M K H. A review on reforming bio-ethanol for hydrogen production[J]. International Journal of Hydrogen Energy, 2007, 32(15):3238-3247.
    [12] 王倩, 徐新, 郭芳林, 等. 乙醇重整制氢催化剂的国内研究进展[J]. 中外能源, 2008, 13(2):23-29.

    WANG Q, XU X, GUO F L, et al. Domestic research progress in catalyst for hydrogen manufacture from ethanol reforming[J]. Sino-Global Energy, 2008, 13(2):23-29(in Chinese).

    [13]
    [14] 毛晓明, 王鹏宇. Ni系催化剂上乙醇水蒸气重整制氢研究进展[J]. 商丘师范学院学报, 2009, 25(12):70-74.

    MAO X M, WANG P Y. The development of catalysts in ethanol steam reforming for fuel cells[J]. Journal of Shangqiu Normal University, 2009, 25(12):70-74(in Chinese).

    [15]
    [16] 吴川, 张华民, 衣宝廉. 化学制氢技术研究进展[J]. 化学进展, 2005, 17(3):423-429.

    WU C, ZHANG H M, YI B L. Recent Advances in hydrogen generation with chemical methods[J]. Progress in Chemistry, 2005, 17(3):423-429(in Chinese).

    [17] 王卫平, 吕功煊. 乙醇催化制氢研究进展[J]. 化学进展, 2003, 15(1):74-78.

    WANG W P, LU G X. Advances in catalytic generation of hydrogen from ethanol[J]. Progress in Chemistry, 2003, 15(1):74-78(in Chinese).

    [18] ZHANG T, HE J, ZHAO Y, et al. Precious metal-support interaction in automotive exhaust catalysts[J]. Journal of Rare Earths, 2014, 32(2):97-107.
    [19] FURTADO A C, ALONSO C G, CANTAO M P, et al. Support influence on Ni-Cu catalysts behavior under ethanol oxidative reforming reaction[J]. International Journal of Hydrogen Energy, 2011, 36(16):9653-9662.
    [20] HAN S J, BANG Y J, SEO J G, et al. Hydrogen production by steam reforming of ethanol over mesoporous Ni-Al2O3-ZrO2 xerogel catalysts:Effect of Zr/Al molar ratio[J]. International Journal of Hydrogen Energy], 2013, 38(3):1376-1383.
    [21] SHENG P Y, YEE A, BOWMAKER G A, et al. H2 production from ethanol over Rh-Pt/CeO2 catalysts:The role of Rh for the efficient dissociation of the carbon-carbon bond[J]. Journal of Catalysis, 2002, 208(2):393-403.
    [22] HUANG L, CHOONG C, CHEN L W, et al. Oxide-supported Rh catalysts for H2 generation from low-temperature ethanol steam reforming:Effects of support, Rh precursor and Rh loading on catalytic performance[J]. Rsc Advances, 2015, 5(120):99461-99482.
    [23] ROH H, WANG Y, KING D, et al. Low temperature and H2 selective catalysts for ethanol steam reforming[J]. Catalysis Letters, 2006, 108(1-2):15-19.
    [24] BUNLUESIN T, GORTE R J AND GRAHAM G W. Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh:Implications for oxygen-storage properties[J]. Applied Catalysis B:Environmental, 1998, 15(1-2):107-l14.
    [25] LIGURAS D K, KONDARIDES D I, VERYKIOS X E. Production of hydrogen for fuel ceils by steam reforming of ethanol over supported noble metal catalysts[J]. Applied Catalysis B Environmental, 2003, 43(4):345-354.
    [26] BREEN J P, BURCH R, COLEMAN H M. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications[J]. Applied Catalysis B Environmental, 2002, 39(1):65-74.
    [27] PARASKEVI P, XENOPHON E V. Mechanistic aspects of the low temperature steam reforming of ethanol over supported Pt catalysts[J]. International Journal of Hydrogen Energy, 2012, 37(21):16333-16345.
    [28] CAN F, VALANT A L, BION N, et al. New active and selective Rh-REOx-Al2O3 catalysts for ethanol steam reforming[J]. Journal of Physical Chemistry C, 2008, 112(36):14145-14153.
    [29] PAULA O V, CAMPOS C H, NAVARRO R M, et al. Improved ethanol steam reforming on Rh/Al2O3 catalysts doped with CeO2 or/and La2O3:Influence in reaction pathways including coke formation[J]. Applied Catalysis A:General, 2015, 505(1):159-172.
    [30] PAULA O V, CAMPOS C H, NAVARRO R M, et al. Rh/Al2O3-La2O3 catalysts promoted with CeO2 for ethanol steam reforming reaction[J]. Journal of Molecular Catalysis A:Chemical, 2015, 407:169-181.
    [31] 刘承伟, 石秋杰, 李彬等. 不同载体对钌基催化剂催化乙醇水蒸气重整制氢性能的影响[J]. 中国稀土学报, 2009, 27(1):19-24.

    LIU C W,SHI Q J, LI B, et al. Effects of different supports on properties of ruthenium catalyst for hydrogen production from steam reforming of ethanol[J]. Journal of the Chinese Society of Rare Earths, 2009, 27(1):19-24(in Chinese).

    [32] CIFUENTES B, HERNANDEZ M, MONSALVE S, et al. Hydrogen production by steam reforming of ethanol on a RhPt/CeO2/SiO2 catalyst:Synergistic effect of the Si:Ce ratio on the catalyst performance[J]. Applied Catalysis A:General, 2016, 523:283-293.
    [33] 李键铭,郎林, 杨文申, 等. 生物乙醇重整制氢用ZSM-5催化剂的载体碱改性研究[J]. 可再生能源, 2014, 32(4):537-541.

    LI J M, LANG L, YANG W S, et al. Alkali modification of ZSM-5 supports for Hydrogen production by ethanol reforming[J]. Renewable Energy Resources, 2014, 32(4):537-541(in Chinese).

    [34] INOKAWA H, NISHIMOTO S, KAMESHIMA Y, et al. Difference in the catalystic activity of transition metals ans their cations loaded in zeolite Y for ethanol steam reforming[J]. International Journal of Hydrogen Energy, 2010, 35(21):11719-11724.
    [35] SONG Y Q, ZHU X X, SONG Y, et al. An effective method to enhance the stability on-stream of butane aromatization:Post-treatment of ZSM-5 by alkali solution of sodium hydroxide[J]. Applied Catalysis A:General, 2006, 302(1):69-77.
    [36] CAMPOS-SKROBOT F C, RIZZO-DOMINGUES R C P, FERNANDES-MACHADO N R C, et al. Novel zeolite-supported rhodium catalysts for ethanol steam reforming[J]. Journal of Power Sources, 2008, 183(2):713-716.
    [37] VARGA O A G, HEREDIA J A R, WANG J A, et al. Hydrogen production over Rh/Ce-MCM-41 catalysts via ethanol steam reforming[J]. International Journal of Hydrogen Energy, 2013, 38(32):13914-13925.
    [38] LANG L, ZHAO S, YIN X, et al. Catalytic activities of K-modified zeolite ZSM-5 supported rhodium catalysts in low-temperature steam reforming of bioethanol[J]. International Journal of Hydrogen Energy, 2015, 40(32):9924-9934.
    [39] 杨宇, 吴绯, 马建新. 载体对镍催化剂催化乙醇水蒸气重整制氢反应性能的影响[J].催化学报, 2005, 26(2):131-137.

    YANG Y, WU F, MA J X. Effect of support on catalytic performance of nickel catalyst for ethanol steam reforming[J]. Chinese Journal of Catalysis, 2005, 26(2):131-137(in Chinese).

    [40] GALETTI A E, GOMEZ M F, ARRUA L A, et al. Ni catalysts supported on modified ZnAl2O4 for ethanol steam reforming[J]. Applied Catalysis A General, 2010, 380(1-2):40-47.
    [41] FATSIKOSTAS A N, KONDARIDES D I, VERYKIOS X E. Production of hydrogen for fuel cells by reformation of biomass-derived ethanol[J]. Catalysis Today, 2002, 75(1-4):145-155.
    [42] FATSIKOSTAS A N, VERYKIOS X E. Reaction network of steam reforming of ethanol over Ni-based catalysts[J]. Journal of Catalysis, 2004, 225(2):439-452.
    [43] FRUSTERIA F, FRENIA S, CHIODO V, et al. Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts[J]. International Journal of Hydrogen Energy, 2006, 31(15):2193-2199.
    [44] BATISTA M S,SANTOS R K S,ASSAF E M,et al. Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol[J]. Power Sources, 2003, 124(1):99-103.
    [45] LLORCA J, PISCINA P R, SALES J, et al. Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts[J]. Chemical Communications, 2001, 242(7):641-642.
    [46] VIZCAINO A J, CARRERO A, CALLES J A. Pure silica SBA-15 supported Cu-Ni catalysts for hydrogen production by ethanol steam reforming[J]. Applied Catalysis A:General 2007, 327:82-94.
    [47] LINDO M, VIZCAINO A J, CALLES J A, et al. Ethanol steam reforming on Ni/Al-SBA-15 catalysts:Effect of the aluminium content[J]. International Journal of Hydrogen Energy, 2010, 35(11):5895-5901.
    [48] KIM D, KWAK B S, PARK N K, et al. Dynamic hydrogen production from ethanol steamreforming reaction on NixMoy/SBA-15 catalytic system[J]. International Journal of Energy Research, 2014; 39(2):279-292.
    [49] ZHENG Z L, YANG D H, LI T T, et al. A novel BEA-type zeolite core-shell multiple catalyst for hydrogen-rich gas production from ethanol steam reforming[J]. Catalysis Science & Technology, 2016, 6(14):5427-5439.
    [50] FATSIKOSTAS A N, KONDARIDES D I, Verykios X E. Production of hydrogen for fuel cells by reformation of biomass-derived ethanol[J]. Catalysis Today, 2002, 75(1-4):145-155.
    [51] VIZCAINO A J, CARRERO A, CALLES J A. Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts[J]. International Journal of Hydrogen Energy, 2007, 32(10/11):1450-1461.
    [52] SANCHEZ-SANCHEZ M C, NAVARRO R M, FIERRO J L G. Ethanol steam reforming over Ni/MxOy-Al2O3 (M=Ce, La, Zr and Mg) catalysts:Influence of support on the hydrogen production[J]. International Journal of Hydrogen Energy, 2007, 32(s 10-11):1462-1471.
    [53] CAMPOS C H, OSORIO-VARGAS P, FLORES-GONZALEZ N, et al. Effect of Ni loading on lanthanide (La and Ce) promoted γ-Al2O3 catalysts applied to ethanol steam reforming[J]. Catalysis Letters, 2016, 146(2):433-441.
    [54] ANJANEYULU C, COSTA L O O, RIBEIRO M, et al. Effect of Zn addition on the performance of Ni/Al2O3 catalyst for steam reforming of ethanol[J]. Applied Catalysis A General, 2016, 519(5):85-98.
    [55] SRINIVAS D, SATYANARAYANA C V V, POTDAR H S,et al. Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol[J]. Applied Catalysis A General, 2003, 246(2):323-334.
    [56] MA H Y, ZENG L, TIAN H, et al. Efficient hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts[J]. Applied Catalysis B Environmental, 2016, 181:321-331.
    [57] BELLIDO J D A, ASSAF E M. Nickel catalysts supported on ZrO2, Y2O3-stabilized ZrO2 and CaO-stabilized ZrO2 for the steam reforming of ethanol:Effect of the support and nickel load[J]. Journal of Power Sources, 2008, 177(1):24-32.
    [58] CARRERO A, CALLES J A, VIZCAINO A J. Effect of Mg and Ca addition on coke deposition over Cu-Ni/SiO2 catalysts for ethanol steam reforming[J].Chemical Engineering Journal, 2010, 163(3):395-402.
    [59] CALLES J A, CARRERO A, VIZCAINO A J. Ce and La modification of mesoporous Cu-Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming[J]. Microporous and Mesoporous Materials, 2009, 119(1-3):200-207.
    [60] VIZCAINO A J, CARRERO A, CALLES J A. Ethanol steam reforming on Mg-and Ca-modified Cu-Ni/SBA-15 catalysts[J]. Catalysis Today, 2009, 146(1-2):63-70.
    [61] KWAK B S, LEE J S, LEE J S, et al. Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/Zeolite Y catalysts at mild temperature[J]. Applied Energy, 2011, 88(12):4366-4375.
    [62] INOKAWA H, NISHIMOTO S, KAMESHIMA Y, et al. Promotion of H2 production from ethanol steam reforming by zeolite basicity[J]. International Journal of Hydrogen Energy, 2011, 36(23):15195-15202.
    [63] VIZCAINO A J, CARRERO A, CALLES J A. Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg[J]. Fuel Processing Technology, 2016, 146:99-109.
    [64] CAI W J, WANG F G, DANIEL C, et al. Oxidative steam reforming of ethanol over Ir/CeO2 catalysts:A structure sensitivity analysis[J]. Journal of Catalysis, 2012, 286(2):137-152.
    [65] WANG H Z, LEUNG D Y C, LEUNG M K H, et al. A review on hydrogen production using aluminum and aluminum alloys[J]. Renewable Sustainable Energy Reviews, 2009, 13(4):845-853.
    [66] ERDOHELYI A, RASKO J, KECSKES T, et al. Hydrogen formation in ethanol reforming on supported noble metal catalysts[J]. Catalysis Today, 2006, 116(3):367-376.
    [67] RAMOS I A. C, MONTINI T, LORENZUT B, et al. Hydrogen production from ethanol steam reforming on M/CeO2/YSZ (M=Ru, Pd, Ag) nanocomposites[J]. Catalysis Today, 2012, 180(1):96-104.
    [68] 杨宇, 王荣文, 杨家梦, 等. 金属/MgO上的乙醇水蒸气重整制氢[J]. 石油化工, 2004, 33(增刊):349-351. YANG Y, WANG R W, YANG J M, et al. Hydrogen production for ethanol steam reforming reaction over metal/MgO catalysts[J]. Petrochemical Technology, 2004

    , 33(Suppl):349-351(in Chinese).

    [69] KONSOLAKIS M, IOAKIMIDIS Z, KRAIA T, et al. Hydrogen production by ethanol steam reforming (ESR) over CeO2 supported transition metal (Fe, Co, Ni, Cu) catalysts:insight into the structure-activity relationship[J]. Catalysts, 2016, 6(3):39:1-27.
    [70] 毛丽萍, 吕功煊. Ni/Al2O3和Fe/Al2O3催化剂催化乙醇水蒸气重整制氢的对比研究[J]. 分子催化, 2007, 21(4):365-367.

    MAO L P, LU G X. Comparative study of Ni/Al2O3 and Fe/Al2O3 catalysts for ethanol steam reforming[J]. Journal of Molecular Catalysis (China), 2007, 21(4):365-367(in Chinese).

    [71] CHEN L W, CHOONG C K S, ZHONG Z Y, et al. Carbon monoxide-free hydrogen production via low-temperature steam reforming of ethanol over iron-promoted Rh catalyst[J]. Journal of Catalysis, 2010, 276(2):197-200.
    [72] SONG J H, HAN S J, YOO J, et al. Effect of Sr content on hydrogen production by steam reforming of ethanol over Ni-Sr/Al2O3-ZrO2 xerogel catalysts[J]. Journal of Molecular Catalysis A Chemical, 2016, s 418-419:68-77.
    [73] SONG J H, HAN S J, YOO J, et al. Hydrogen production by steam reforming of ethanol over Ni-X/Al2O3-ZrO2 (X=Mg, Ca, Sr, and Ba) xerogel catalysts:Effect of alkaline earth metal addition[J]. Journal of Molecular Catalysis A Chemical, 2016, 415(35):151-159.
    [74] LORENZUT B,MONTINI T, ROGATIS L D, et al. Hydrogen production through alcohol steam reforming on Cu/ZnO-based catalysts[J]. Applied Catalysis B Environmental, 2011, 101(3-4):397-408.
    [75] MARINO F J,CERRELLA E G,DUHALDE S,et al. Hydrogen from steam reforming of ethanol. Characterization and performance ofcopper-nickel supported catalysts[J]. International Journal of Hydrogen Energy, 1998, 23(12):1095-1101.
    [76] MARINO F, BOVERI M, BARONETTI G, et al. Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al2O3 catalysts. Effect of Ni[J]. International Journal of Hydrogen Energy, 2001, 26(7):665-668.
    [77] MAIA T A, BELLIDO J D A, ASSAF E M. Hydrogen production by ethanol steam reforming using Cu/Ni/gamma-Al2O3 catalysts[J]. Quimica Nova Vol, 2007, 30(2):339-345.
    [78] ZHANG L F, LIU J, LI W, et al. Ethanol steam reforming over Ni-Cu/Al2O3-MyOz (M=Si, La, Mg,and Zn) catalysts[J]. Journal of Natural Gas Chemistry, 2009, 18(1):55-65.
    [79] 张利峰, 魏永涛, 邱泽勤等. Ni-Cu/Al2O3·SiO2 催化剂上乙醇水蒸气重整制氢——燃料电池氢源技术[J]. 天津化工, 2011, 25(3):21-24.

    ZHANG L F, WEI Y T, QIU Z L, et al. Hydrogen production for fuel cell via ethanol steam reforming reaction over Ni-Cu/Al2O3·SiO2 catalysts[J]. Tianjin Chemical Industry, 2011, 25(3):21-24(in Chinese).

    [80] CHEN L C, LIN S D. The ethanol steam reforming over Cu-Ni/SiO2 catalysts:Effect of Cu/Ni ratio[J]. Applied Catalysis B Environmental, 2011, 106(3-4):639-649.
    [81] SONG H, BAO X, HADAD C M, et al. Adsorption/desorption behavior of ethanol steam reforming reactants and intermediates over supported cobalt catalysts[J]. Catalysis Letters, 2011, 141(1):43-54.
    [82] ABDELKADER A, DALY H, SAIH Y, et al. Steam reforming of ethanol over Co3O4-Fe2O3 mixed oxides[J]. International Journal of Hydrogen Energy, 2013, 38(20):8263-8275.
    [83] HAGA F, NAKAJIMA T, MIYA H, et al. Catalytic properties of supported cobalt catalysts for steam reforming of ethanol[J], Catalysis Letters, 1997, 48(1-2):223-227.
    [84] DAI R Q, CHEN Y Z, JIN F,et al. Hydrogen production from ethanol steam reforming over Co-Ni/CeO2 catalysts prepared by coprecipitation[J]. Advanced Materials Resources, 2013, 2479(724):729-734.
    [85] ZHAO X X, LU G X. Modulating and controlling active species dispersion over Ni-Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming[J]. International Journal of Hydrogen Energy, 2016, 41(5):3349-3362.
    [86] WANG Z J, WANG C X, CHEN S Q, et al. Co-Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen[J]. International Journal of Hydrogen Energy, 2014, 39(11):5644-5652.
  • 加载中
计量
  • 文章访问数:  2234
  • HTML全文浏览数:  2073
  • PDF下载数:  212
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-03-07
  • 刊出日期:  2017-10-15
梅占强, 何素芳, 陈柯臻, 陈然, 陆继长, 罗永明. 乙醇水蒸气重整制氢催化剂的研究进展[J]. 环境化学, 2017, 36(10): 2126-2139. doi: 10.7524/j.issn.0254-6108.2017030702
引用本文: 梅占强, 何素芳, 陈柯臻, 陈然, 陆继长, 罗永明. 乙醇水蒸气重整制氢催化剂的研究进展[J]. 环境化学, 2017, 36(10): 2126-2139. doi: 10.7524/j.issn.0254-6108.2017030702
MEI Zhanqiang, HE Sufang, CHEN Kezhen, CHEN Ran, LU Jichang, LUO Yongming. The development of catalysts for hydrogen production by ethanol steam reforming[J]. Environmental Chemistry, 2017, 36(10): 2126-2139. doi: 10.7524/j.issn.0254-6108.2017030702
Citation: MEI Zhanqiang, HE Sufang, CHEN Kezhen, CHEN Ran, LU Jichang, LUO Yongming. The development of catalysts for hydrogen production by ethanol steam reforming[J]. Environmental Chemistry, 2017, 36(10): 2126-2139. doi: 10.7524/j.issn.0254-6108.2017030702

乙醇水蒸气重整制氢催化剂的研究进展

  • 1.  昆明理工大学, 材料科学与工程学院, 昆明, 650093;
  • 2.  昆明理工大学, 分析测试中心, 昆明, 650093;
  • 3.  昆明理工大学, 环境科学与工程学院, 昆明, 650500
基金项目:

国家自然科学基金(2166060141)资助.

摘要: 氢能源是清洁新能源的重要研究方面,被认为具有广泛的应用前景.乙醇水蒸气重整制氢是氢能源开发中的研究热点,而催化剂的研制及应用至关重要.基于此,论文综述了近年来国内外催化剂载体与催化剂活性组分的研究进展.从贵金属催化剂载体与非贵金属催化剂载体两个方面阐述了单一组分载体的优劣,同时为了弥补单一组分载体的不足,本文也对催化剂载体的改性进行了总结.就催化剂的活性组分而言,本文概述了一些常见的单一活性组分的研究,并详细叙述了第二活性组分加入的必要性.最终对乙醇水蒸气重整制氢催化剂的研究方向进行了展望.

English Abstract

参考文献 (86)

返回顶部

目录

/

返回文章
返回