X射线光电子能谱在环境催化研究中的应用
Application of X-ray photoelectron spectroscopy in environmental catalysis research
-
摘要: X射线光电子能谱(XPS)是常用的材料表面分析技术之一,在材料、化学、环境、催化等众多领域的研究中都有广泛用途.本文首先简要介绍XPS的工作原理、分析特点及其一般应用,再主要以本课题组在环境催化领域的研究工作为例,阐述XPS在催化剂的元素组成、化学态分析及关键组分定量分析中的应用,从而表明其在环境催化材料表面性质分析及催化机理研究中的重要性.Abstract: As one of the most popular surface analysis methods, X-ray photoelectron spectroscopy (XPS) is widely used in many fields, such as material, chemistry, environment and catalysis. This paper briefly introduced the principle, characteristics and general applications of XPS, and gave some examples in environmental catalysis to elaborate the applications of XPS in qualitative analysis of elemental composition and chemical state and quantitative analysis of the key components, thus showing the importance of XPS in studying the surface properties and catalytic mechanism of environmental catalytic material.
-
-
[1] TSENG T K, CHU H, HSU H H. Characterization of γ-alumina-supported manganese oxide as an incineration catalyst for trichloroethylene[J]. Environmental Science & Technology, 2003, 37(1):171-176. [2] YAN T, TIAN J, GUAN W, et al. Ultra-low loading of Ag3PO4on hierarchical In2S3 microspheres to improve the photocatalytic performance:The cocatalytic effect of Ag and Ag3PO4[J]. Applied Catalysis B:Environmental, 2017, 202:84-94. [3] 齐中, 王熙, 李来胜, 等. 基于水热法制备的TiO2/MoS2复合光催化剂及其光催化制氢活性[J]. 环境化学, 2016, 35(5):1027-1034. QI Z, WANG X, LI L S, et al. Development of TiO2/MoS2 by hydrothermal method for photocatalytic hydrogen generation under solar light[J]. Environmental Chemistry, 2016, 35(5):1027-1034(in Chinese).
[4] 李凯, 魏停, 高政纲, 等. Ti3+自掺杂TiO2纳米管/g-C3N4复合材料的制备及可见光催化性能[J]. 环境化学, 2016, 35(5):1020-1026. LI K, WEI T, GAO Z G, et al. Preparation and visible-light photocatalytic performance of Ti3+ self-doped TiO2 nanotubes/g-C3N4 composites[J]. Environmental Chemistry, 2016, 35(5):1020-1026(in Chinese).
[5] 程禄, 孙静, 申婷婷, 等. FeVO4/BiVO4光-Fenton复合催化剂的制备与催化性能[J]. 环境化学, 2016, 35(10):2156-2161. CHENG L, SUN J, SHEN T T, et al. Preparation of FeVO4/BiVO4 and its catalytic property in a photo-Fenton-like process for the degradation of methylene blue[J]. Environmental Chemistry, 2016, 35(10):2156-2161(in Chinese).
[6] WANG W, YOU S, GONG X, et al. Bioinspired nanosucker array for enhancing bioelectricity generation in microbial fuel cells[J]. Advanced Materials, 2016, 28(2):270-275. [7] YAN W, HERZING A A, LI X, et al. Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity[J]. Environmental Science & Technology, 2010, 44(11):4288-4294. [8] 杜翠翠,王秋麟,陆胜勇,等.V2O5/TiO2基催化剂催化转化1,2-二氯苯[J].环境化学,2017,36(1):141-146. DU C C, WANG Q L, LU S Y, et al. Catalytic conversion of 1,2-dichlorobenzene (1,2-DCBz) over V2O5/TiO2-based catalysts[J]. Environmental Chemistry, 2017, 36(1):141-146(in Chinese).
[9] GROSVENOR A P, KOBE B A, BIESINGER M C, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds[J]. Surface and Interface Analysis, 2004, 36(12):1564-1574. [10] MA J, YANG Q, WEN Y, et al. Fe-g C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range[J]. Applied Catalysis B:Environmental, 2017, 201:232-240. [11] 张中杰, 关卫省, 孙绍芳, 等. Pt/BiVO4光催化剂的制备及其光催化降解性能[J]. 环境化学, 2014,33(6):1003-1009. ZHANG Z J, GUANG W S, SUN S F, et al. Preparation of Pt/BiVO4 and its photocatalytic activity for the degradation of tetracycline[J]. Environmental Chemistry, 2014,33(6):1003-1009(in Chinese).
[12] MA H, ZHUO Q, WANG B. Characteristics of CuO-MoO3-P2O5 catalyst and its catalytic wet oxidation (CWO) of dye wastewater under extremely mild conditions[J]. Environmental Science & Technology, 2007, 41(21):7491-7496. [13] ZHANG Y, LIU C, XU B, et al. Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2:Combination of adsorption and catalysis oxidation[J]. Applied Catalysis B:Environmental, 2016, 199:447-457. [14] CHOI W J, CHUNG Y J, PARK S, et al. A simple method for cleaning graphene surfaces with an electrostatic force[J]. Advanced Materials, 2014, 26(4):637-644. [15] LANCEE R J, DUGULAN A I, THVNE P C, et al. Chemical looping capabilities of olivine, used as a catalyst in indirect biomass gasification[J]. Applied Catalysis B:Environmental, 2014, 145:216-222. [16] KOBE B A, RAMAMURTHY S, BIESINGER M C, et al. XPS imaging investigations of pitting corrosion mechanisms in Inconel 600[J]. Surface and Interface Analysis, 2005, 37(5):478-494. [17] LEI M, WANG N, ZHU L H, et al. Peculiar and rapid photocatalytic degradation of tetrabromodiphenyl ethers over Ag/TiO2 induced by interaction between silver nanoparticles and bromine atoms in the target[J]. Chemosphere, 2016, 150:536-544. [18] WANG X B, QIN Y L, ZHU L H, et al. Nitrogen-doped reduced graphene oxide as a bifunctional material for removing bisphenols:Synergistic effect between adsorption and catalysis[J]. Environmental Science & Technology, 2015, 49(11):6855-6864. [19] LUO W, ZHU L H, WANG N, et al. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst[J]. Environmental Science & Technology, 2010, 44(5):1786-1791. [20] ZHAO X R, ZHU L H, Zhang Y Y, et al. Removing organic contaminants with bifunctional iron modified rectorite as efficient adsorbent and visible light photo-Fenton catalyst[J]. Journal of Hazardous Materials, 2012, 215:57-64. [21] 陈满堂, 宋洲, 王楠, 等. 铋银氧化物混合物高效氧化降解四溴双酚A的研究[J]. 环境科学, 2015,36(1):209-214. CHEN M T, SONG Z, WANG N, et al. Efficient oxidative degradation of tetrabromobisphenol A by silver bismuth oxide. Environmental Science, 2015,36(1):209-214(in Chinese).
[22] LEI M, WANG N, ZHU L H, et al. A peculiar mechanism for the photocatalytic reduction of decabromodiphenyl ether over reduced graphene oxide-TiO2 photocatalyst[J]. Chemical Engineering Journal, 2014, 241:207-215. [23] DING Y B, ZHU L H, HUANG A Z, et al. A heterogeneous Co3O4-Bi2O3 composite catalyst for oxidative degradation of organic pollutants in the presence of peroxymonosulfate[J]. Catalysis Science & Technology, 2012, 2(9):1977-1984. [24] UDAWATTA C P K, BANDARA J, RAJAPAKSE C S K. Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O[J]. Photochemical & Photobiological Sciences, 2005, 4(11):857-861. [25] JIN Z, ZHANG X, LI Y, et al. 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation[J]. Catalysis Communications, 2007, 8(8):1267-1273. [26] KUM J, YOO S, ALI G, et al. Photocatalytic hydrogen production over CuO and TiO2 nanoparticles mixture[J]. International Journal of Hydrogen Energy, 2013, 38:13541-13546. [27] LEI M, WANG N, ZHU L H, et al. Photocatalytic reductive degradation of polybrominated diphenyl ethers on CuO/TiO2 nanocomposites:A mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper[J]. Applied Catalysis B:Environmental, 2016, 182:414-423. [28] ZHANG W J, LI Y, ZHU S L, et al. Copper doping in titanium oxide catalyst film prepared by dc reactive magnetron sputtering[J]. Catalysis Today, 2004, 93:589-594. [29] FENG H B, LI Y P, LUO D M, et al. Novel visible-light-responding InVO4-Cu2O-TiO2 ternary nanoheterostructure:Preparation and photocatalytic characteristics[J]. Chinese Journal of Catalysis, 2016, 37(6):855-862. [30] DEVARAJ M, SARAVANAN R, DEIVASIGAMANI R K, et al. Preparation of novel shape Cu and Cu/Cu2O nanoparticles for the determination of dopamine and paracetamol[J]. Journal of Molecular Liquids, 2016, 221:930-941. [31] PLATZMAN I, BRENER R, HAICK H, et al. Oxidation of polycrystalline copper thin films at ambient conditions[J]. The Journal of Physical Chemistry C, 2008, 112(4):1101-1108. [32] SINATRA L, LAGROW A P, PENG W, et al. A Au/Cu2O-TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction?[J]. Journal of Catalysis, 2015, 322:109-117. [33] DING Y B, ZHU L H, WANG N, et al. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J]. Applied Catalysis B:Environmental, 2013, 129:153-162. [34] DING Y B, TANG H Q, ZHANG S H, et al. Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO2 mediated heterogeneous activation of peroxymonosulfate[J]. Journal of Hazardous Materials, 2016, 317:686-694. [35] LIU J M, HAN L, AN N, et al. Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage[J]. Applied Catalysis B:Environmental, 2017, 202:642-652. [36] CHENG X W, CHENG Q F, DENG X Y, et al. A facile and novel strategy to synthesize reduced TiO2 nanotubes photoelectrode for photoelectrocatalytic degradation of diclofenac[J]. Chemosphere, 2016, 144:888-894. -

计量
- 文章访问数: 3049
- HTML全文浏览数: 2968
- PDF下载数: 384
- 施引文献: 0