Fe(Ⅱ)/生物炭对硝基苯的还原降解

张慧鸣, 张鹏, 殷哲云, 孙红文. Fe(Ⅱ)/生物炭对硝基苯的还原降解[J]. 环境化学, 2017, 36(11): 2297-2303. doi: 10.7524/j.issn.0254-6108.2017031507
引用本文: 张慧鸣, 张鹏, 殷哲云, 孙红文. Fe(Ⅱ)/生物炭对硝基苯的还原降解[J]. 环境化学, 2017, 36(11): 2297-2303. doi: 10.7524/j.issn.0254-6108.2017031507
ZHANG Huiming, ZHANG Peng, YIN Zheyun, SUN Hongwen. Reductive degradation of nitrobenzene by Fe(Ⅱ)/biochar[J]. Environmental Chemistry, 2017, 36(11): 2297-2303. doi: 10.7524/j.issn.0254-6108.2017031507
Citation: ZHANG Huiming, ZHANG Peng, YIN Zheyun, SUN Hongwen. Reductive degradation of nitrobenzene by Fe(Ⅱ)/biochar[J]. Environmental Chemistry, 2017, 36(11): 2297-2303. doi: 10.7524/j.issn.0254-6108.2017031507

Fe(Ⅱ)/生物炭对硝基苯的还原降解

  • 基金项目:

    973计划课题(2014CB441104)资助.

Reductive degradation of nitrobenzene by Fe(Ⅱ)/biochar

  • Fund Project: Supported by 973 Progamm (2014CB441104).
  • 摘要: 以玉米秸秆、猪粪为原料,在不同温度下制备生物炭,并对其物化性质进行了表征.研究了厌氧条件下,Fe(Ⅱ)/生物炭体系对硝基苯的还原降解,并对降解条件进行了优化,对降解机理进行了讨论.结果表明,在Fe(Ⅱ)/生物炭体系中,Fe(Ⅱ)的还原性显著增强;原料、制备温度、Fe(Ⅱ)初始浓度、pH值都会对Fe(Ⅱ)的还原活性造成影响.其中在pH=7、固水比=1∶500、25℃,Fe(Ⅱ)和硝基苯的初始量分别为12 mmol·L-1和0.08 mmol·L-1的条件下,Fe(Ⅱ)/PBC700可将93%的硝基苯降解,为最佳降解体系.为了揭示Fe(Ⅱ)/生物炭体系还原硝基苯的关键结构与机理,分别研究了生物炭除灰处理和除有机质处理对Fe(Ⅱ)/生物炭体系还原能力的影响.发现两种处理都可使反应加速,由此推断,一方面生物炭灰分中的金属氧化物与Fe(Ⅱ)组成表面结合铁还原系统使Fe(Ⅱ)的还原性增强;另一方面生物炭的类石墨烯片层有机质结构起到了电子传递的作用,也可促进Fe(Ⅱ)对硝基苯的还原.本文为Fe(Ⅱ)还原去除有机污染物发现了一个新的载体.
  • 加载中
  • [1] JEONG H, ANATHARAMAN K, HAN Y, et al. Abiotic reductive dechlorination of cis-dichloroethylen by Fe species formed during iron or sulfate reduction[J]. Environmental Science & Technology, 2011, 45(12):5186-5194.
    [2] LIANG X, BUTLER E. Effects of natural organic matter model compounds on the transformation of carbon tetrachloride by chloride green rust[J]. Water Research, 2010, 44(7):2125-2132.
    [3] KLAUSEN J, TROBER S, HADERLEIN S, et al. Reduction of substituted nitrobezenes by Fe(Ⅱ) in aqueous mineral suspensions[J]. Environmental Science & Technology, 1995, 29(9):2396-2404.
    [4] JEON B, DEMPSEY B, BURGOS W. Kinetics and mechanisms for reactions of Fe(Ⅱ) with iron(Ⅲ) oxides[J]. Environmental Science & Technology, 2003, 37(15):3309-3315.
    [5] LUAN F, XIE L, SHENG J, et al. Reduction of nitrobenzene by steel convert slag with Fe(Ⅱ) system:The role of calcium in steel slag[J]. Journal of Hazardous Materials, 2012, 217-218(6):416-421.
    [6] SCHULTZ C, GRUNDL T. pH dependence on reduction rate of 4-Cl-nitrobenzene by Fe(Ⅱ)/montmorillonite systems[J]. Environmental Science & Technology, 2000, 34(17):3641-3648.
    [7] DANIELSEN K M, HAYES K F. pH dependence of carbon tetra-chloride reductive dechlorination by magnetite[J]. Environmental Science & Technology, 2004, 38(18):4745-4752.
    [8] LEHMANN J, JOSEPH S. Biochar for environmental management science and technology[M]. London:Earthscan, 2009.
    [9] SANDER M, HOFSTETTER T, Gorski C. Electrochemical analyses of redox-active iron minerals:A review of nonmediated and mediated approaches[J]. Environmental Science & Technology, 2015, 49(10):5862-5878.
    [10] XU Y, HE Y, FENG X, et al. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(Ⅲ) reduction by an iron-reducing bacterium Clostridium beijerinckii Z[J]. Science of the Total Environment, 2014, 473-474(3):215-223.
    [11] XU W, PIGNATELLO J, MITCH W. Role of black carbon electrical conductivity in mediating hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transformation on carbon surfaces by sulfides[J]. Environmental Science & Technology, 2013, 47(13):7129-7136.
    [12] OH S, SON J, CHIU P. Biochar-mediated reductive transformation of nitroherbicides and explosives[J]. Environmental Toxicology and Chemistry, 2013, 32(3):501-508.
    [13] YU L, YUAN Y, TANG J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens[J]. Scientific Reports, 2015, DOI:10.1038/srep16221.
    [14] NICOLE B, TOBLE R, THOMAS B, et al. Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions[J]. Environmental Science & Technology, 2007, 41(22):7765-7772.
    [15] CHUN Y, SHENG G, CHOU T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology, 2004, 38(17):4649-4655.
    [16] YANG Y, SHENG G. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns[J]. Environmental Science & Technology, 2003, 37(16):3635-3639.
    [17] ENDERS A, HANLE K, WHITMAN T, et al. Characterization of biochars to evaluate recalcitrance and agronomic performance[J]. Bioresource Technology, 2012, 114(3):644-653.
    [18] RAVEENDRAN K, GANESH A, KHILAR K. Influence of mineral matter on biomass pyrolysis characteristics[J]. Fuel, 1995, 74(12):1812-1822.
    [19] ZHANG P, SUN HW, YU L,et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars:Impact of structuralproperties of biochars[J]. Journal of Hazardous Materials, 2013, 244-245(3):217-224.
    [20] BALDOCK J, SMERNIK K. Chemical composition and bioavailability of thermally altered Pinus resinosa (red pine) wood[J]. Organic Geochemistry, 2002, 22(9):1093-1109.
    [21] CHEN B, JOHNSON E, CHEFETZ B. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials:the role of polarity and accessibility[J]. Environmental Science & Technology, 2005, 39(16):6138-6146.
    [22] KEILUWEIT M, NICO P, JOHNSON M, et al. Dynamicmolecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4):1247-1253.
    [23] PECHER K, HADERLEIN S B, SCHWARZENBACH R P. Reduction of polyhalogenated methanes by surface-bound Fe(Ⅱ) in aqueous suspensions of iron oxides[J]. Environmental Science & Technology, 2004, 36(8):1734-1741.
  • 加载中
计量
  • 文章访问数:  1322
  • HTML全文浏览数:  1118
  • PDF下载数:  480
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-03-15
  • 刊出日期:  2017-11-15

Fe(Ⅱ)/生物炭对硝基苯的还原降解

  • 1. 南开大学环境科学与工程学院, 天津, 300350
基金项目:

973计划课题(2014CB441104)资助.

摘要: 以玉米秸秆、猪粪为原料,在不同温度下制备生物炭,并对其物化性质进行了表征.研究了厌氧条件下,Fe(Ⅱ)/生物炭体系对硝基苯的还原降解,并对降解条件进行了优化,对降解机理进行了讨论.结果表明,在Fe(Ⅱ)/生物炭体系中,Fe(Ⅱ)的还原性显著增强;原料、制备温度、Fe(Ⅱ)初始浓度、pH值都会对Fe(Ⅱ)的还原活性造成影响.其中在pH=7、固水比=1∶500、25℃,Fe(Ⅱ)和硝基苯的初始量分别为12 mmol·L-1和0.08 mmol·L-1的条件下,Fe(Ⅱ)/PBC700可将93%的硝基苯降解,为最佳降解体系.为了揭示Fe(Ⅱ)/生物炭体系还原硝基苯的关键结构与机理,分别研究了生物炭除灰处理和除有机质处理对Fe(Ⅱ)/生物炭体系还原能力的影响.发现两种处理都可使反应加速,由此推断,一方面生物炭灰分中的金属氧化物与Fe(Ⅱ)组成表面结合铁还原系统使Fe(Ⅱ)的还原性增强;另一方面生物炭的类石墨烯片层有机质结构起到了电子传递的作用,也可促进Fe(Ⅱ)对硝基苯的还原.本文为Fe(Ⅱ)还原去除有机污染物发现了一个新的载体.

English Abstract

参考文献 (23)

目录

/

返回文章
返回