桂林市秋季PM2.5组分特征及高浓度硫酸根形成机制初探

文建辉, 陈筱佳, 宋韶华, 程金平. 桂林市秋季PM2.5组分特征及高浓度硫酸根形成机制初探[J]. 环境化学, 2017, 36(12): 2676-2682. doi: 10.7524/j.issn.0254-6108.2017031402
引用本文: 文建辉, 陈筱佳, 宋韶华, 程金平. 桂林市秋季PM2.5组分特征及高浓度硫酸根形成机制初探[J]. 环境化学, 2017, 36(12): 2676-2682. doi: 10.7524/j.issn.0254-6108.2017031402
WEN Jianhui, CHEN Xiaojia, SONG Shaohua, CHENG Jinping. Composition of PM2.5 and the formation mechanism of high secondary sulfate in the fall season of Guilin City[J]. Environmental Chemistry, 2017, 36(12): 2676-2682. doi: 10.7524/j.issn.0254-6108.2017031402
Citation: WEN Jianhui, CHEN Xiaojia, SONG Shaohua, CHENG Jinping. Composition of PM2.5 and the formation mechanism of high secondary sulfate in the fall season of Guilin City[J]. Environmental Chemistry, 2017, 36(12): 2676-2682. doi: 10.7524/j.issn.0254-6108.2017031402

桂林市秋季PM2.5组分特征及高浓度硫酸根形成机制初探

  • 基金项目:

    国家自然科学基金(21577090)和桂林市2015年节能减排资金资助.

Composition of PM2.5 and the formation mechanism of high secondary sulfate in the fall season of Guilin City

  • Fund Project: Supported by the National Natural Science Foundation of China (21577090) and 2015 Guilin Energy-Saving and Emission-Reduction Funds.
  • 摘要: 为了揭示桂林市大气中PM2.5组分特征,本研究于2015年秋季在桂林5个环境受体点采集了PM2.5样品,分析了PM2.5质量浓度及多种无机元素、水溶性离子和有机碳(OC)、元素碳(EC)的含量,并运用富集因子法、比值法等分别研究了PM2.5中元素富集程度、颗粒物来源等情况,并探讨了PM2.5中高硫酸盐(SO42-)的污染成因.结果表明,采样期间,桂林市PM2.5的浓度为(57.0±35.8) μg·m-3,PM2.5中以水溶性离子(56.7%)和有机物OM(22.6%)污染最为突出,其次是元素(7.2%)和EC(6.3%).PM2.5中Se、Pb、As、Zn、V、Cu严重富集,表明燃煤源排放对桂林市大气中元素产生了较大的影响;[NO3-]/[SO42-]比值小于1,也进一步证明了固定燃烧源的主导作用.SO42-/PM2.5的比值为41%,高于国内其他城市报道值;而SOR均值0.51远高于一次排放源特征值(0.1),表明除本地和区域传输的一次SO42-排放外,SO42-主要来自SO2的二次转化.因此,桂林市在控制本地燃煤源排放的同时,还应当注意区域污染传输对PM2.5的影响.
  • 加载中
  • [1] 唐孝炎,张远航,邵敏.大气环境化学[M]. 北京:高等教育出版社,2006. TANG X Y, ZHANG Y H, SHAO M. Atmospheric Environmental Chemistry[M]. Beijing:Higher Education Press,2006(in Chinese).
    [2] TIE X, WU D, BRASSEUR G. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China[J]. Atmospheric Environment, 2009, 43(14):2375-2377.
    [3] STEINFELD J I. Atmospheric chemistry and physics:From air pollution to climate change[J]. Environment:Science and Policy for Sustainable Development, 1998, 40(7):26-26.
    [4] KEARY J, JENNINGS S G, O'CONNOR T C, et al. PM10 concentration measurements in Dublin City[J]. Environmental Monitoring & Assessment, 1998, 52(1/2):3-18.
    [5] 陈源, 谢绍东, 罗彬. 内江市大气细颗粒物化学组成及其消光特征[J]. 环境科学学报, 2017, 37(2):485-492.

    CHEN Y, XIE S D, LUO B. Chemical characteristics of fine particle and its light extinction in Neijiang[J]. Acta Scientiae Circumstantiae, 2017, 37(2):485-492(in Chinese).

    [6] 刘庆阳, 刘艳菊, 杨岭, 等. 北京城郊冬季一次大气重污染过程颗粒物的污染特征[J]. 环境科学学报, 2014, 34(1):12-18.

    LIU Q Y,LIU Y J,YANG Z,et al. Daily variations of chemical properties in airborne particulate matter during a high pollution winter episode in Beijing[J]. Acta Scientiae Circumstantiae, 2014, 34(1):12-18(in Chinese).

    [7] ZHAO P S, FENG Y C, ZHU T, et al. Characterization of resuspended dust in six cities of North China[J]. Atmospheric Environment, 2006, 40(30):5807-5814.
    [8] 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991, 12(4):12-19.

    WEI F S, CHEN J S. Study on soil environmental background value in China[J]. Environmental Science, 1991, 12(4):12-19(in Chinese).

    [9] SUTHERLAND R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology, 2000, 39(6):611-627.
    [10] 田贺忠, 赵丹, 何孟常,等. 2005年中国燃煤大气锑排放清单[J]. 中国环境科学, 2010, 30(11):1550-1557.

    TIAN H Z, ZHAO D, HE M C, et al. Atmospheric antimony emission inventories from coal combustion in China in 2005[J]. China Environmental Science, 2010,30(11):1550~1557(in Chinese).

    [11] PANT P, HARRISON R M. Critical review of receptor modeling for particulate matter:A case study of India[J].Atmospheric Environment, 2012, 49:1-12.
    [12] TAIWO A M, HARRISON R M, SHI Z. A review of receptor modeling of industrially emitted particulate matter[J]. Atmospheric Environment, 2014, 97:109-120.
    [13] LU X, WANG L, LI L Y, et al. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China[J]. Journal of Hazardous Materials, 2012, 173(1):744-749.
    [14] TURPIN B, CARY R A, HUNTZICKER J J. An in-situ, time-resolved analyzed for aerosol organic and elemental carbon[J]. Aerosol Science Technology, 1990,12(1):161-171.
    [15] WATSON J G, CHOW J C, HOUCK J E. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995[J]. Chemosphere, 2001, 43(8):1141-1151.
    [16] CACHIER H, BREMOND M P, BUAT-MENARD P. Carbonaceous aerosols from different tropical biomass burning sources[J].Nature, 1989,340, 371-373.
    [17] KERMINEN V, HILLAMO R, TEINIL K, et al. Ion balances of size-resolved tropospheric aerosol samples:implications for the acidity and atmospheric processing of aerosols[J]. Atmospheric Environment. 2001, 35(31):5255-5265.
    [18] 王念飞, 陈阳, 郝庆菊, 等. 苏州市PM2.5 中水溶性离子的季节变化及来源分析[J]. 环境科学, 2016, 37(12):4482-4489.

    WANG N F, CHEN Y, HAO Q J, et al. Seasonal Variation and source analysis of the water-soluble inorganic ions in fine particulate matter in Suzhou[J]. Environmental Science, 2016, 37(12):4482-4489(in Chinese).

    [19] ARIMOTO R, DUCE R A, SAVOIE D L, et al. Relationships among aerosol constitutes from Asia and the North Pacific during PEM-West A[J]. Journal of Geophysical Research Atmospheres, 1996, 101(D1):2011-2024.
    [20] WANG H L,QIAO L P,LOU S R,et al. Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai,China[J]. Journal of Cleaner Production, 2016, 112:1302-1311.
    [21] 杨懂艳,刘保献,张大伟,等.2012-2013年间北京市PM2.5中水溶性离子时空分布规律及相关性分析[J]. 环境科学,2015,36(3):768-773.

    YANG D Y, LIU B X, ZHANG D W, et al. Correlation, seasonal and temporal variation of water-soluble ions of PM 2.5 in Beijing during 2012-2013[J]. Environmental Science, 2015, 36(3):768-773(in Chinese).

    [22] 陈仕意,曾立民,董华斌,等. 华北地区乡村站点(曲周)夏季PM2.5中二次无机组分的生成机制与来源解析[J]. 环境科学. 2015, 36(10):3554-3565.

    CHEN S Y, ZENG L M, DONG H B, et al. Transformation mechanism and sources of secondary inorganic components in PM2.5 at an Agriculture Site (Quzhou) in the North China Plain in Summer[J]. Environmental Science, 2015, 36(10):3554-3565(in Chinese).

    [23] 刘兴瑞,马嫣,崔芬萍,等. 南京北郊一次重污染事件期间PM2.5理化特性及其对大气消光的影响[J]. 环境化学. 2016, 35(6):1164-1171.

    LIU X R, MA Y, CUI F P, et al. Physicochemical characteristics of PM2.5 and impacts on light extinction during the heavy pollution period at North Suburban Nanjing[J]. Environmental Chemistry, 2016, 35(6):1164-1171(in Chinese).

    [24] 田鹏山, 曹军骥, 韩永明, 等. 关中地区冬季PM2.5 中碳气溶胶的污染特征及来源解析[J]. 环境科学, 2016, 37(2):427-433.

    TIAN P S, CAO J J, HAN Y M, et al. Pollution characteristics and sources of carbonaceous aerosol in PM2.5 during winter in Guanzhong Area[J]. Environmental Science, 2016,37(2):427-433(in Chinese).

    [25] 马莹, 吴兑, 刘建, 等. 广州干湿季典型灰霾过程水溶性离子成分对比分析[J]. 环境科学学报, 2017, 37(1):73-81.

    Ma Y,Wu D,Liu J,et al.Comparative analysis of water-soluble ions during typical haze processes in dry and wet seasons in Guangzhou[J].Acta Scientiae Circumstantiae, 2017, 37(1):73-81(in Chinese).

    [26] WANG Y, ZHUANG G, TANG A, et al. The ion chemistry and the source of PM2.5 aerosol in Beijing[J]. Atmospheric Environment, 2005, 39(21):3771-3784.
    [27] 程瑾,张青宁,张冰洁,等. 福建三明市春季PM2.5中有机碳、元素碳和水溶性离子特征分析[J]. 南京信息工程大学学报. 2016, 8(3):239-246.

    CHENG J, ZHANG Q N, ZHANG B J, et al. Characterization of EC/OC and water-soluble ions of PM2.5 samples in springtime of Sanming, Fujian province[J].Journal of Nanjing University of Information Science and Technology(Natural Science Edition), 2016, 8(3):239-246(in Chinese).

  • 加载中
计量
  • 文章访问数:  1443
  • HTML全文浏览数:  1381
  • PDF下载数:  224
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-03-14
  • 刊出日期:  2017-12-15
文建辉, 陈筱佳, 宋韶华, 程金平. 桂林市秋季PM2.5组分特征及高浓度硫酸根形成机制初探[J]. 环境化学, 2017, 36(12): 2676-2682. doi: 10.7524/j.issn.0254-6108.2017031402
引用本文: 文建辉, 陈筱佳, 宋韶华, 程金平. 桂林市秋季PM2.5组分特征及高浓度硫酸根形成机制初探[J]. 环境化学, 2017, 36(12): 2676-2682. doi: 10.7524/j.issn.0254-6108.2017031402
WEN Jianhui, CHEN Xiaojia, SONG Shaohua, CHENG Jinping. Composition of PM2.5 and the formation mechanism of high secondary sulfate in the fall season of Guilin City[J]. Environmental Chemistry, 2017, 36(12): 2676-2682. doi: 10.7524/j.issn.0254-6108.2017031402
Citation: WEN Jianhui, CHEN Xiaojia, SONG Shaohua, CHENG Jinping. Composition of PM2.5 and the formation mechanism of high secondary sulfate in the fall season of Guilin City[J]. Environmental Chemistry, 2017, 36(12): 2676-2682. doi: 10.7524/j.issn.0254-6108.2017031402

桂林市秋季PM2.5组分特征及高浓度硫酸根形成机制初探

  • 1.  桂林市环境监测中心站, 桂林, 541002;
  • 2.  上海交通大学环境科学与工程学院, 上海, 200240
基金项目:

国家自然科学基金(21577090)和桂林市2015年节能减排资金资助.

摘要: 为了揭示桂林市大气中PM2.5组分特征,本研究于2015年秋季在桂林5个环境受体点采集了PM2.5样品,分析了PM2.5质量浓度及多种无机元素、水溶性离子和有机碳(OC)、元素碳(EC)的含量,并运用富集因子法、比值法等分别研究了PM2.5中元素富集程度、颗粒物来源等情况,并探讨了PM2.5中高硫酸盐(SO42-)的污染成因.结果表明,采样期间,桂林市PM2.5的浓度为(57.0±35.8) μg·m-3,PM2.5中以水溶性离子(56.7%)和有机物OM(22.6%)污染最为突出,其次是元素(7.2%)和EC(6.3%).PM2.5中Se、Pb、As、Zn、V、Cu严重富集,表明燃煤源排放对桂林市大气中元素产生了较大的影响;[NO3-]/[SO42-]比值小于1,也进一步证明了固定燃烧源的主导作用.SO42-/PM2.5的比值为41%,高于国内其他城市报道值;而SOR均值0.51远高于一次排放源特征值(0.1),表明除本地和区域传输的一次SO42-排放外,SO42-主要来自SO2的二次转化.因此,桂林市在控制本地燃煤源排放的同时,还应当注意区域污染传输对PM2.5的影响.

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回