桂林市秋季PM2.5组分特征及高浓度硫酸根形成机制初探
Composition of PM2.5 and the formation mechanism of high secondary sulfate in the fall season of Guilin City
-
摘要: 为了揭示桂林市大气中PM2.5组分特征,本研究于2015年秋季在桂林5个环境受体点采集了PM2.5样品,分析了PM2.5质量浓度及多种无机元素、水溶性离子和有机碳(OC)、元素碳(EC)的含量,并运用富集因子法、比值法等分别研究了PM2.5中元素富集程度、颗粒物来源等情况,并探讨了PM2.5中高硫酸盐(SO42-)的污染成因.结果表明,采样期间,桂林市PM2.5的浓度为(57.0±35.8) μg·m-3,PM2.5中以水溶性离子(56.7%)和有机物OM(22.6%)污染最为突出,其次是元素(7.2%)和EC(6.3%).PM2.5中Se、Pb、As、Zn、V、Cu严重富集,表明燃煤源排放对桂林市大气中元素产生了较大的影响;[NO3-]/[SO42-]比值小于1,也进一步证明了固定燃烧源的主导作用.SO42-/PM2.5的比值为41%,高于国内其他城市报道值;而SOR均值0.51远高于一次排放源特征值(0.1),表明除本地和区域传输的一次SO42-排放外,SO42-主要来自SO2的二次转化.因此,桂林市在控制本地燃煤源排放的同时,还应当注意区域污染传输对PM2.5的影响.Abstract: To investigate the composition of PM2.5, samples were collected at 5 sites from September 2015 to November 2015 in Guilin. Concentrations of PM2.5, inorganic elements, water-soluble ions, organic carbon (OC) and elemental carbon (EC) were analyzed. Enrichment factor method and ratioing were used to evaluate the element enrichment degree and the source of PM2.5, as well as to investigate the reason for the pollution of high-concentration secondary sulfate in PM2.5. The results showed that the concentration of PM2.5 was (57.0±35.8) μg · m-3, among which the concentrations of water-soluble ions and OM, which contributed the most to the spotted pollution, were 56.7% and 22.6%, respectively, followed by trace element (7.2%) and EC (6.3%). Se, Pb, As, Zn, V and Cu were mainly enriched by anthropogenic pollution, such as coal-burning activities. The ratio of[NO3-]/[SO42-] was less than 1, indicating the dominant role of fixed combustion source. The ratio of[SO42-]/PM2.5 was 41%, higher than reported values in other cities in China, and the average value of SOR was well above the flag value of first emission (0.1). This means that in addition to emission of SO42- from local coal-fired source and regional transmission, most sulfate was from secondary transformation process. Therefore, the effects of regional pollution transmission on PM2.5 should be noted at the same time as emissions from the local coal sources were concerned in Guilin.
-
Key words:
- Guilin /
- PM25 /
- composition characteristics /
- high concentration sulfate /
- formation mechanism
-
-
[1] 唐孝炎,张远航,邵敏.大气环境化学[M]. 北京:高等教育出版社,2006. TANG X Y, ZHANG Y H, SHAO M. Atmospheric Environmental Chemistry[M]. Beijing:Higher Education Press,2006(in Chinese). [2] TIE X, WU D, BRASSEUR G. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China[J]. Atmospheric Environment, 2009, 43(14):2375-2377. [3] STEINFELD J I. Atmospheric chemistry and physics:From air pollution to climate change[J]. Environment:Science and Policy for Sustainable Development, 1998, 40(7):26-26. [4] KEARY J, JENNINGS S G, O'CONNOR T C, et al. PM10 concentration measurements in Dublin City[J]. Environmental Monitoring & Assessment, 1998, 52(1/2):3-18. [5] 陈源, 谢绍东, 罗彬. 内江市大气细颗粒物化学组成及其消光特征[J]. 环境科学学报, 2017, 37(2):485-492. CHEN Y, XIE S D, LUO B. Chemical characteristics of fine particle and its light extinction in Neijiang[J]. Acta Scientiae Circumstantiae, 2017, 37(2):485-492(in Chinese).
[6] 刘庆阳, 刘艳菊, 杨岭, 等. 北京城郊冬季一次大气重污染过程颗粒物的污染特征[J]. 环境科学学报, 2014, 34(1):12-18. LIU Q Y,LIU Y J,YANG Z,et al. Daily variations of chemical properties in airborne particulate matter during a high pollution winter episode in Beijing[J]. Acta Scientiae Circumstantiae, 2014, 34(1):12-18(in Chinese).
[7] ZHAO P S, FENG Y C, ZHU T, et al. Characterization of resuspended dust in six cities of North China[J]. Atmospheric Environment, 2006, 40(30):5807-5814. [8] 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991, 12(4):12-19. WEI F S, CHEN J S. Study on soil environmental background value in China[J]. Environmental Science, 1991, 12(4):12-19(in Chinese).
[9] SUTHERLAND R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology, 2000, 39(6):611-627. [10] 田贺忠, 赵丹, 何孟常,等. 2005年中国燃煤大气锑排放清单[J]. 中国环境科学, 2010, 30(11):1550-1557. TIAN H Z, ZHAO D, HE M C, et al. Atmospheric antimony emission inventories from coal combustion in China in 2005[J]. China Environmental Science, 2010,30(11):1550~1557(in Chinese).
[11] PANT P, HARRISON R M. Critical review of receptor modeling for particulate matter:A case study of India[J].Atmospheric Environment, 2012, 49:1-12. [12] TAIWO A M, HARRISON R M, SHI Z. A review of receptor modeling of industrially emitted particulate matter[J]. Atmospheric Environment, 2014, 97:109-120. [13] LU X, WANG L, LI L Y, et al. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China[J]. Journal of Hazardous Materials, 2012, 173(1):744-749. [14] TURPIN B, CARY R A, HUNTZICKER J J. An in-situ, time-resolved analyzed for aerosol organic and elemental carbon[J]. Aerosol Science Technology, 1990,12(1):161-171. [15] WATSON J G, CHOW J C, HOUCK J E. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995[J]. Chemosphere, 2001, 43(8):1141-1151. [16] CACHIER H, BREMOND M P, BUAT-MENARD P. Carbonaceous aerosols from different tropical biomass burning sources[J].Nature, 1989,340, 371-373. [17] KERMINEN V, HILLAMO R, TEINIL K, et al. Ion balances of size-resolved tropospheric aerosol samples:implications for the acidity and atmospheric processing of aerosols[J]. Atmospheric Environment. 2001, 35(31):5255-5265. [18] 王念飞, 陈阳, 郝庆菊, 等. 苏州市PM2.5 中水溶性离子的季节变化及来源分析[J]. 环境科学, 2016, 37(12):4482-4489. WANG N F, CHEN Y, HAO Q J, et al. Seasonal Variation and source analysis of the water-soluble inorganic ions in fine particulate matter in Suzhou[J]. Environmental Science, 2016, 37(12):4482-4489(in Chinese).
[19] ARIMOTO R, DUCE R A, SAVOIE D L, et al. Relationships among aerosol constitutes from Asia and the North Pacific during PEM-West A[J]. Journal of Geophysical Research Atmospheres, 1996, 101(D1):2011-2024. [20] WANG H L,QIAO L P,LOU S R,et al. Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai,China[J]. Journal of Cleaner Production, 2016, 112:1302-1311. [21] 杨懂艳,刘保献,张大伟,等.2012-2013年间北京市PM2.5中水溶性离子时空分布规律及相关性分析[J]. 环境科学,2015,36(3):768-773. YANG D Y, LIU B X, ZHANG D W, et al. Correlation, seasonal and temporal variation of water-soluble ions of PM 2.5 in Beijing during 2012-2013[J]. Environmental Science, 2015, 36(3):768-773(in Chinese).
[22] 陈仕意,曾立民,董华斌,等. 华北地区乡村站点(曲周)夏季PM2.5中二次无机组分的生成机制与来源解析[J]. 环境科学. 2015, 36(10):3554-3565. CHEN S Y, ZENG L M, DONG H B, et al. Transformation mechanism and sources of secondary inorganic components in PM2.5 at an Agriculture Site (Quzhou) in the North China Plain in Summer[J]. Environmental Science, 2015, 36(10):3554-3565(in Chinese).
[23] 刘兴瑞,马嫣,崔芬萍,等. 南京北郊一次重污染事件期间PM2.5理化特性及其对大气消光的影响[J]. 环境化学. 2016, 35(6):1164-1171. LIU X R, MA Y, CUI F P, et al. Physicochemical characteristics of PM2.5 and impacts on light extinction during the heavy pollution period at North Suburban Nanjing[J]. Environmental Chemistry, 2016, 35(6):1164-1171(in Chinese).
[24] 田鹏山, 曹军骥, 韩永明, 等. 关中地区冬季PM2.5 中碳气溶胶的污染特征及来源解析[J]. 环境科学, 2016, 37(2):427-433. TIAN P S, CAO J J, HAN Y M, et al. Pollution characteristics and sources of carbonaceous aerosol in PM2.5 during winter in Guanzhong Area[J]. Environmental Science, 2016,37(2):427-433(in Chinese).
[25] 马莹, 吴兑, 刘建, 等. 广州干湿季典型灰霾过程水溶性离子成分对比分析[J]. 环境科学学报, 2017, 37(1):73-81. Ma Y,Wu D,Liu J,et al.Comparative analysis of water-soluble ions during typical haze processes in dry and wet seasons in Guangzhou[J].Acta Scientiae Circumstantiae, 2017, 37(1):73-81(in Chinese).
[26] WANG Y, ZHUANG G, TANG A, et al. The ion chemistry and the source of PM2.5 aerosol in Beijing[J]. Atmospheric Environment, 2005, 39(21):3771-3784. [27] 程瑾,张青宁,张冰洁,等. 福建三明市春季PM2.5中有机碳、元素碳和水溶性离子特征分析[J]. 南京信息工程大学学报. 2016, 8(3):239-246. CHENG J, ZHANG Q N, ZHANG B J, et al. Characterization of EC/OC and water-soluble ions of PM2.5 samples in springtime of Sanming, Fujian province[J].Journal of Nanjing University of Information Science and Technology(Natural Science Edition), 2016, 8(3):239-246(in Chinese).
-

计量
- 文章访问数: 1443
- HTML全文浏览数: 1381
- PDF下载数: 224
- 施引文献: 0