胞内砷磷含量和比值对莱茵衣藻砷酸盐和亚砷酸盐耐性的影响

郑燕恒, 李颢, 张春华, 葛滢. 胞内砷磷含量和比值对莱茵衣藻砷酸盐和亚砷酸盐耐性的影响[J]. 环境化学, 2018, 37(1): 75-81. doi: 10.7524/j.issn.0254-6108.2017040702
引用本文: 郑燕恒, 李颢, 张春华, 葛滢. 胞内砷磷含量和比值对莱茵衣藻砷酸盐和亚砷酸盐耐性的影响[J]. 环境化学, 2018, 37(1): 75-81. doi: 10.7524/j.issn.0254-6108.2017040702
ZHENG Yanheng, LI Hao, ZHANG Chunhua, GE Ying. Effects of intracellular arsenic and phosphorus content and ratio on the tolerance of arsenate and arsenite in Chlamydomonas reinhardtii[J]. Environmental Chemistry, 2018, 37(1): 75-81. doi: 10.7524/j.issn.0254-6108.2017040702
Citation: ZHENG Yanheng, LI Hao, ZHANG Chunhua, GE Ying. Effects of intracellular arsenic and phosphorus content and ratio on the tolerance of arsenate and arsenite in Chlamydomonas reinhardtii[J]. Environmental Chemistry, 2018, 37(1): 75-81. doi: 10.7524/j.issn.0254-6108.2017040702

胞内砷磷含量和比值对莱茵衣藻砷酸盐和亚砷酸盐耐性的影响

  • 基金项目:

    国家自然科学基金(41371468)资助.

Effects of intracellular arsenic and phosphorus content and ratio on the tolerance of arsenate and arsenite in Chlamydomonas reinhardtii

  • Fund Project: Supported by the National Natural Science Foundation of China (41371468).
  • 摘要: 为探索胞内砷(As)与磷(P)含量和比值与莱茵衣藻As耐性的关系,本文设置两个磷酸盐(PO43-)和系列砷酸盐(AsV))、亚砷酸盐(AsⅢ))浓度,处理72 h后测定莱茵衣藻生长情况和胞内As、P含量,并以培养液As浓度([As]dis)、胞内As含量([As]intra)、胞内砷磷比([As:P]intra)推算半数效应浓度(EC50),比较这3种指标对莱茵衣藻As耐性的评价效果.结果表明,随着[As]dis的增加,莱茵衣藻[As]intra上升,提高培养液PO43-浓度不影响AsⅢ)处理下的[As]intra,但显著降低了AsV)处理下的[As]intra.以[As]dis表征EC50时,两种PO43-水平(0.315、3.15 mg·L-1)下的AsⅢ)-EC50(2090.3、21183.6 μg·L-1-As)明显高于AsV)-EC50(162.1、2358.3 μg·L-1-As).基于[As]intra的EC50数据显示,PO43-水平不影响AsⅢ)-EC50(123.9、125.0 μg·g-1-As-dw),但显著影响AsV)-EC50(7.4、58.6 μg·g-1-As-dw).由[As:P]intra推算的EC50可知,PO43-对两种形态As毒性的影响相反,AsⅢ)-EC50分别为21.1、6.1(mol/mol,As/P),AsV)-EC50分别为1.3、3.4(mol/mol,As/P).研究结果说明,AsV)对该藻的毒性大于AsⅢ),莱茵衣藻对AsV)和AsⅢ)的耐性除了受到培养液PO43-浓度的制约外,还受到胞内As、P含量及其比值的影响.
  • 加载中
  • [1] WANG N X, LI Y, DENG X H, et al. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes[J]. Water Research, 2013, 47(7):2497-2506.
    [2] BAHAR M M, MEGHARAJ M, NAIDU R. Bioremediation of arsenic-contaminated water:recent advances and future prospects[J]. Water, Air, & Soil Pollution, 2013, 224(12):1-20.
    [3] WANG S, ZHAO X. On the potential of biological treatment for arsenic contaminaled soils and groundwater[J]. Journal of Environmental Management, 2009, 90(8):2367-2367.
    [4] WANG Y, WANG S, XU P, et al. Review of arsenic speciation, toxicity and metabolism in microalgae[J]. Reviews in Environmental Science and Bio-Technology, 2015, 14:427-451.
    [5] WANG N X, HUANG B, et al. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2014, 157:167-174.
    [6] FUJIWARA S, KOBAYASHI I, HOSHINO S, et al. Isolation and characterization of arsenate-sensitive and resistant mutants of Chlamydomonas reinhardtii[J]. Plant and Cell Physiology, 2000, 41(1):77-83.
    [7] KAISE T, FUJIWARA S, TSUZUKI M, et al. Accumulation of arsenic in a unicellular alga Chlamydomonas reinhardtii[J]. Applied Organometallic Chemistry, 1999, 13(2):107-111.
    [8] YIN X, WANG L, DUAN G, et al. Characterization of arsenate transformation and identification of arsenate reductase in a green alga Chlamydomonas reinhardti[J]. Journal of Environmental Sciences, 2011, 23(7):1186-1193.
    [9] 苑春刚, LE X CHRIS. 砷形态分析[J]. 化学进展, 2009, 21(2/3):467

    -473. YUAN C G, LE X CHRIS. Arsenic speciation analysis[J]. Progress in Chemistry, 2009, 21(2/3):467-473(in Chinese).

    [10] ZHAO F, MA J, MEHARG A, et al. Arsenic uptake and metabolism in plants[J]. New Phytologist, 2009, 181(4):777-794.
    [11] LEVY J L, STAUBER J L, ADAMS M S, et al. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum)[J]. Environmental Toxicology and Chemistry, 2005, 24(10):2630-2639.
    [12] ZHANG S, RENSING C, ZHU Y G. Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments[J]. Environmental Science & Technology, 2014, 48(2):994-1000.
    [13] KARADJOVA I B, SLAVEYKOVA V I, TSALEV D L, et al. The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater[J]. Aquatic Toxicology, 2008, 87(4):264-271.
    [14] SOMER G, VNLV A N. The effect of acid digestion on the recoveries of trace elements:Recommended policies for the elimination of losses[J]. Turkish Journal of Chemistry, 2009, 30(6):745-753.
    [15] ZHANG C H, WANG Y, GE Y. Determination of five arsenic species in Porphyra by microwave-assisted water extraction and high performance liquid chromatography-atomic fluorescence spectrometry[J]. Analytical Letters, 2013, 46(10):1573-1586.
    [16] BAHAR M M, MEGHARAJ M, NAIDU R. Toxicity, transformation and accumulation of inorganic arsenic species in a microalga Scenedesmus sp.isolated from soil[J]. Journal of Applied Phycology, 2013, 25(3):913-917.
    [17] WURL O, ZIMMER L, CUTTER G A. Arsenic and phosphorus biogeochemistry in the ocean:Arsenic species as proxies for P-limitation[J]. Limnology and Oceanography, 2013, 58(2):729-740.
    [18] 丁腾达, 阚啸林, 吴振华, 等. 砷对绿藻的毒性效应及氧化还原条件的影响[J].环境化学, 2016, 35(5):1084-1089.

    DING T D, KAN X L, WU Z H, et al. Toxicity of arsenic on green alge and its effect on redox conditions[J]. Environmental Chemistry, 2016, 35(5):1084-1089(in Chinese).

    [19] MUNOZ L P, PURCHASE D, JONES H, et al. Enhanced determination of As-phytochelatin complexes in Chlorella vulgaris using focused sonication for extraction of water-soluble species[J]. Analytical Methods, 2014, 6(3):791-797.
    [20] NEARING M M, KOCH I, REIMER K J. Complementary arsenic speciation methods:A review[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2014, 99:150-162.
    [21] WANG Y, ZHANG C H, ZHENG Y H, et al. Phytochelatin synthesis in Dunaliella salina induced by arsenite and arsenate under various phosphate regimes[J]. Ecotoxicology and Environmental Safety, 2017, 136:150-160.
    [22] BAHAR M M, MEGHARAJ M, NAIDU R. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp[J]. Environmental Science and Pollution Research, 2016, 23:2663-2668.
    [23] CHEN J, YOSHINAGA M, GARBINSKI L D, et al. Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance[J]. Molecular Microbiology, 2016, 100(6):945-953.
  • 加载中
计量
  • 文章访问数:  1178
  • HTML全文浏览数:  1110
  • PDF下载数:  185
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-04-07
  • 刊出日期:  2018-01-15
郑燕恒, 李颢, 张春华, 葛滢. 胞内砷磷含量和比值对莱茵衣藻砷酸盐和亚砷酸盐耐性的影响[J]. 环境化学, 2018, 37(1): 75-81. doi: 10.7524/j.issn.0254-6108.2017040702
引用本文: 郑燕恒, 李颢, 张春华, 葛滢. 胞内砷磷含量和比值对莱茵衣藻砷酸盐和亚砷酸盐耐性的影响[J]. 环境化学, 2018, 37(1): 75-81. doi: 10.7524/j.issn.0254-6108.2017040702
ZHENG Yanheng, LI Hao, ZHANG Chunhua, GE Ying. Effects of intracellular arsenic and phosphorus content and ratio on the tolerance of arsenate and arsenite in Chlamydomonas reinhardtii[J]. Environmental Chemistry, 2018, 37(1): 75-81. doi: 10.7524/j.issn.0254-6108.2017040702
Citation: ZHENG Yanheng, LI Hao, ZHANG Chunhua, GE Ying. Effects of intracellular arsenic and phosphorus content and ratio on the tolerance of arsenate and arsenite in Chlamydomonas reinhardtii[J]. Environmental Chemistry, 2018, 37(1): 75-81. doi: 10.7524/j.issn.0254-6108.2017040702

胞内砷磷含量和比值对莱茵衣藻砷酸盐和亚砷酸盐耐性的影响

  • 1.  南京农业大学资源与环境科学学院,江苏省海洋生物学重点实验室, 南京, 210095;
  • 2.  南京农业大学生命科学实验中心,元素与生命科学示范实验室, 南京, 210095
基金项目:

国家自然科学基金(41371468)资助.

摘要: 为探索胞内砷(As)与磷(P)含量和比值与莱茵衣藻As耐性的关系,本文设置两个磷酸盐(PO43-)和系列砷酸盐(AsV))、亚砷酸盐(AsⅢ))浓度,处理72 h后测定莱茵衣藻生长情况和胞内As、P含量,并以培养液As浓度([As]dis)、胞内As含量([As]intra)、胞内砷磷比([As:P]intra)推算半数效应浓度(EC50),比较这3种指标对莱茵衣藻As耐性的评价效果.结果表明,随着[As]dis的增加,莱茵衣藻[As]intra上升,提高培养液PO43-浓度不影响AsⅢ)处理下的[As]intra,但显著降低了AsV)处理下的[As]intra.以[As]dis表征EC50时,两种PO43-水平(0.315、3.15 mg·L-1)下的AsⅢ)-EC50(2090.3、21183.6 μg·L-1-As)明显高于AsV)-EC50(162.1、2358.3 μg·L-1-As).基于[As]intra的EC50数据显示,PO43-水平不影响AsⅢ)-EC50(123.9、125.0 μg·g-1-As-dw),但显著影响AsV)-EC50(7.4、58.6 μg·g-1-As-dw).由[As:P]intra推算的EC50可知,PO43-对两种形态As毒性的影响相反,AsⅢ)-EC50分别为21.1、6.1(mol/mol,As/P),AsV)-EC50分别为1.3、3.4(mol/mol,As/P).研究结果说明,AsV)对该藻的毒性大于AsⅢ),莱茵衣藻对AsV)和AsⅢ)的耐性除了受到培养液PO43-浓度的制约外,还受到胞内As、P含量及其比值的影响.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回