邻苯二甲酸酯的正辛醇/水分配系数定量结构-性质关系
Quantitative structure-property relationships on n-octanol/water partition coefficients of phthalic acid esters
-
摘要: 有机污染物的环境归趋主要由其分配性质决定,如正辛醇/水分配系数(KOW).本文采用密度泛函理论,在B3LYP/6-311G**的水平上对PAEs的结构进行优化振动分析,Gaussian输出的15种量子化学参数被用来对该类物质正辛醇/水分配系数(KOW)进行定量结构-性质关系(QSPR)研究.采用一种顺序方法:相关分析、主成分分析、多元线性回归和统计验证,建立了QSPR模型.结果表明,单个描述符(平均极化率α)在确定KOW中起重要作用,显式函数关系式为lgKOW=-3.468+0.041α,lgKOW的值随着α的增大而线性增大.模型具有良好的拟合能力(R2=0.99,RMSE=0.33)、稳健性(QLOO2=0.97,QBOOT2=0.98)和预测能力(Qext2=0.98),可利用该模型对其他PAEs分子的lgKOW进行预测.
-
关键词:
- PAEs /
- 正辛醇/水分配系数 /
- 密度泛函理论(DFT) /
- 定量结构-性质相关(QSPR)
Abstract: The environmental fate of organic pollutants is governed primarily by their partitioning property such as n-octanol/water partition coefficient(KOW). In this work Density functional theory (DFT) calculations at the B3LYP/6-311G** level of theory were carried out to optimize the geometries and vibrational analysis of all the phthalic acid esters. From the Gaussian output files, 15 theoretical parameters were obtained and were used for the quantitative structure-property relationship(QSPR) study for KOW. In the present study, the development of the QSPR model employed a sequential approach:correlation analysis, principal component analysis, multi-linear regression. The result indicates that the single descriptor, average polarizability (α), plays an important role in determining the partitioning properties with a global standardized function of lgKOW=-3.468+0.041α, from which we can see that the values of lgKOW increased with the increase of α. The resulting model had satisfactory goodness-of-fit (R2=0.99, RMSE=0.33), robustness (QLOO2=0.97, QBOOT2=0.98) and predictive ability (Qext2=0.98), so it can be used to predict the lgKOW values for other PAEs. -
[1] NET S, SEMPÉRÉ R, DELMONT A, et al. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices[J]. Environmental Science & Technology, 2015, 49(7):4019-4035. [2] DEBLONDE T, COSSU-LEGUILLE C, HARTEMANN P. Emerging pollutants in wastewater:A review of the literature[J]. International Journal of Hygiene and Environmental Health, 2011, 214(6):442-448. [3] ABDEL DAIEM M M, RIVERA-UTRILLA J, OCAMPO-PÉREZ R, et al. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies-A review[J]. Journal of Environmental Management, 2012, 109:164-178. [4] 李锦,张占恩,陈鑫,等. 超声提取-分散液相微萃取-气相色谱质谱法测定大气PM2.5中15种邻苯二甲酸酯[J]. 环境化学, 2017, 36(1):183-189. LI J, ZHANG Z E, CHEN X, et al. Determination of fifteen phthalate esters in air particulate matter(PM2.5) by ultrasonic extraction-dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2017, 36(1):183-189(in Chinese).
[5] 于云江,叶昊,杨彦,等. 太湖流域(苏南地区)经口介质中邻苯二甲酸酯的生物有效性及人体暴露评估[J]. 环境化学, 2014, 33(2):194-205. YU Y J, YE H, YANG Y, et al. The bioaccessibility and exposure assessment of PAEs via oralmedia in Taihu Lake Basin of south Jiangsu Province[J]. Environmental Chemistry, 2014, 33(2):194-205(in Chinese).
[6] PÉREZ-ALBALADEJO E, FERNANDES D, LACORTE S, et al. Comparative toxicity, oxidative stress and endocrine disruption potential of plasticizers in JEG-3 human placental cells[J]. Toxicology in Vitro, 2017, 38:41-48. [7] 王昱文,柴淼,曾甯,等. 典型废旧塑料处置地土壤中邻苯二甲酸酯污染特征及健康风险[J]. 环境化学, 2016, 35(2):364-372. WANG Y W, CHAI M, ZENG N, et al. Contamination and health risk of phthalate esters in soils from a typical waste plastic recycling area[J]. Environmental Chemistry, 2016, 35(2):364-372(in Chinese).
[8] CHEN J, QUAN X, YAZHI Z, et al. Quantitative structure-property relationship studies on n-octanol/water partitioning coefficients of PCDD/Fs[J]. Chemosphere, 2001, 44(6):1369-1374. [9] [10] 郑晓英,周玉文,王俊安. 污泥中邻苯二甲酸酯生物降解性与化学结构的相关性[J]. 工业用水与废水, 2006,37(5):13-16. ZHENG X Y, ZHOU Y W, WANG J A, et al. Relativity between biodegradability and chemical structure of phthalic acid esters in sludge[J]. Industrial Water & Wastewater, 2006, 37(5):13-16(in Chinese).
[11] 马燕红,丁红艳,马丽,等. 邻苯二甲酸酯类化合物的定量结构-色谱保留关系[J]. 食品科学, 2012, 33(24):253-256. MA Y H, DING H Y, MA L, et al. A quantitative structure-retention relationship study for prediction of GC retention times of phthalate esters[J]. Food Science, 2012, 33(24):253-256(in Chinese).
[12] 马丽,丁红艳,薛少宗,等. 邻苯二甲酸酯类增塑剂QSRR研究及在白酒包装材料中的应用[J]. 食品科学, 2013, 34(8):220-223. MA L, DING H Y, XUE S Z, et al. Determination and application of phthalic acid esters in liquor packaging[J]. Food Science, 2013, 34(8):220-223(in Chinese).
[13] 隆兴兴,牛军峰,史姝琼. 邻苯二甲酸酯类化合物正辛醇-水分配系数的QSPR研究[J]. 环境科学, 2006, 27(11):2318-2322. LONG X X, NIU J F, SHI S Q. Research on quantitative structure-property relationships for n-octanol/water partition coefficients of phthalic acid esters[J]. Environmental Science, 2006, 27(11):2318-2322(in Chinese).
[14] YANG F, WANG M, WANG Z. Sorption behavior of 17 phthalic acid esters on three soils:Effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study[J]. Chemosphere, 2013, 93(1):82-89. [15] YANG Z, LUO S, WEI Z, et al. Rate constants of hydroxyl radical oxidation of polychlorinated biphenyls in the gas phase:A single-descriptor based QSAR and DFT study[J]. Environmental Pollution, 2016, 211:157-164. [16] 秦良,罗斯,高树梅,等. 零价铁降解氯代有机污染物的QSPR研究[J]. 环境化学, 2009, 28(3):400-403. QIN L, LUO S, GAO S M, et al. The QSPR investigation of the degradation of chlorinated contamination by zero-valent iron[J]. Environmental Chemistry, 2009, 28(3):400-403(in Chinese).
[17] YANG F, QU R, WANG M, et al. Experimental and QSPR study of sorption properties of polychlorinated diphenyl sulfides (PCDPSs) in Yangtze River plain soil[J]. Geoderma, 2013, 193-194:140-148. [18] KARELSON M, LOBANOV V S, KATRITZKY A R. Quantum-chemical descriptors in QSAR/QSPR studies[J]. Chemical Reviews, 1996, 96:1027-1043. [19] XIAO R, YE T, WEI Z, et al. Quantitative structure-activity relationship (QSAR) for the oxidation of trace organic contaminants by sulfate radical[J]. Environmental Science & Technology, 2015, 49(22):13394-13402. [20] SUDHAKARAN S, AMY G L. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification[J]. Water Research, 2013, 47(3):1111-1122. [21] SUDHAKARAN S, CALVIN J, AMY G L. QSAR models for the removal of organic micropollutants in four different river water matrices[J]. Chemosphere, 2012, 87:144-150. [22] GRAMATICA P, SANGION A. A Historical excursus on the statistical validation parameters for QSAR models:A clarification concerning metrics and terminology[J]. Journal of Chemical Information and Modeling, 2016, 56(6):1127-1131. [23] YE T, WEI Z, SPINNEY R, et al. Quantitative structure-activity relationship for the apparent rate constants of aromatic contaminants oxidized by ferrate (Ⅵ)[J]. Chemical Engineering Journal, 2017, 317:258-266. [24] MA G, YUAN Q, YU H, et al. Development and evaluation of predictive model for bovine serum albumin-water partition coefficients of neutral organic chemicals[J]. Ecotoxicology and Environmental Safety, 2017, 138:92-97.
计量
- 文章访问数: 1541
- HTML全文浏览数: 1466
- PDF下载数: 285
- 施引文献: 0