六溴环十二烷异构体的毒理效应及其在生物体内的代谢转化过程研究进展
Toxicological effects and metabolic transformation of hexabromocyclododecane isomers in organisms: A review
-
摘要: 六溴环十二烷(hexabromocyclododecane,HBCD)是一种溴化阻燃添加剂,在建筑、纺织、电子生产等工业中被广泛应用,造成环境污染的同时,对人体健康也存在危害,属于持久性有机污染物(POPs),引起各国学者的广泛关注.工业级的HBCD主要由(±)-α-HBCD,(±)-β-HBCD和(±)-γ-HBCD构成,本文总结了近年来关于HBCD对映异构体及非对映异构体的研究,对比几种异构体的毒理效应、在不同生物体内的吸收、转化、代谢的过程及其代谢机理,发现几种异构体对不同种生物体甚至同一种生物体不同组织部位的作用均存在很大差异,提出了进一步研究的主要方向.Abstract: Hexabromocyclododecane (HBCD) is a brominated flame retardant (BRFs) that is widely used in construction, textile, electronic manufacturing and other industries. It has been classified as a persistent organic pollutant (POPs) and poses a potential threat to humans. HBCD contamination in different environments has drawn considerable attention from researchers all over the world. Industrial HBCD is mainly composed of the (±)-α-HBCD, (±)-β-HBCD and (±)-γ-HBCD isomers. This review summarizes recent studies on HBCD enantiomers and diastereomers, and further compares the differences in their toxicological effects, absorption, transformation, metabolism and metabolic mechanisms in various organisms. The HBCD isomers were found to exhibit differential effects on various species, even on disparate tissues in the same organism. Future research directions in this field are also proposed in this review.
-
Key words:
- hexabromocyclododecane /
- toxicological effect /
- transformation /
- metabolism /
- organisms
-
-
[1] TANABE S. Temporal trends of brominated flame retardants in coastal waters of Japan and South China:Retrospective monitoring study using archived samples from es-Bank, Ehime University, Japan[J]. Marine Pollution Bulletin, 2008, 57(6):267-274. [2] 李永东, 云霞, 那广水, 等. 环境中六溴环十二烷的研究进展[J]. 环境与健康杂志, 2010, 27(10):933-936. LI Y D,YUN X, NA G Y, et al. Progress in research on the hexabromocyclododecane in environment[J].Journal of Envirnment and Health, 2010, 27(10):933-939(in Chinese).
[3] SON M H, KIM J, SHIN E S, et al. Diastereoisomer-and species-specific distribution of hexabromocyclododecane (HBCD) in fish and marine invertebrates[J]. Journal of Hazardous Materials, 2015, 300:114-120. [4] LAW R J, COVACI A, HARRAD S, et al. Levels and trends of PBDEs and HBCDs in the global environment:Status at the end of 2012[J]. Environment International, 2014, 65:147-158. [5] VORKAMP K, BOSSI R, RIGÉT F F, et al. Novel brominated flame retardants and dechlorane plus in Greenland air and biota[J]. Environmental Pollution, 2014, 196:284-291. [6] ZENG Y H, LUO X J, ZHENG X B, et al. Species-specific bioaccumulation of halogenated organic pollutants and their metabolites in fish serum from an e-waste site, South China[J]. Archives of Environmental Contamination & Toxicology, 2014, 67(3):348-357. [7] SELLSTRÖM U, KIERKEGAARD A, WIT C D, et al. Polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from a Swedish River[J]. Environmental Toxicology & Chemistry, 1998, 17(6):1065-1072. [8] SINDIKU O, BABAYEMI J, OSIBANJO O, et al. Polybrominated diphenyl ethers listed as stockholm convention POPs, other brominated flame retardants and heavy metals in e-waste polymers in Nigeria[J]. Environmental Science and Pollution Research, 2015, 22(19):14489-14501. [9] DU M, LIN L, YAN C, et al. Diastereoisomer-and enantiomer-specific accumulation, depuration, and bioisomerization of hexabromocyclododecanes in zebrafish (Danio rerio)[J]. Environ Sci Technol, 2012, 46(20):11040-11046. [10] ZHANG H, PAN L, TAO Y, et al. Identification and expression of differentially expressed genes in clam venerupis philippinarum in response to environmental pollutant hexabromocyclododecane (HBCD)[J]. Journal of Experimental Marine Biology & Ecology, 2013, 445(3):166-173. [11] KOIKE E, YANAGISAWA R, TAKIGAMI H, et al. Brominated flame retardants stimulate mouse immune cells in vitro[J]. J Appl Toxicol, 2013, 33(12):1451-1459. [12] HINKSON N C, WHALEN M M. Hexabromocyclododecane decreases tumor-cell-binding capacity and cell-surface protein expression of human natural killer cells[J]. J Appl Toxicol, 2010, 30(4):302-309. [13] VAN DER VEN L T M, VERHOEF A, VAN DE KUIL T, et al. A 28-day oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in wistar rats[J]. Toxicological Sciences, 2006, 94(2):281-292. [14] CANTÓN R F, PEIJNENBURG A A, HOOGENBOOM R L, et al. Subacute effects of hexabromocyclododecane (HBCD) on hepatic gene expression profiles in rats[J]. Toxicol Appl Pharmacol, 2008, 231(2):267-272. [15] YAMADA-OKABE T, SAKAI H, KASHIMA Y, et al. Modulation at a cellular level of the thyroid hormone receptor-mediated gene expression by 1,2,5,6,9,10-hexabromocyclododecane (HBCD), 4,4'-diiodobiphenyl (DIB), and nitrofen (NIP)[J]. Toxicology Letters, 2005, 155(1):127-133. [16] YANAGISAWA R, KOIKE E, WIN-SHWE T T, et al. Impaired lipid and glucose homeostasis in hexabromocyclododecane-exposed mice fed a high-fat diet[J]. Environmental Health Perspectives, 2014, 122(3):277-283. [17] AL-MOUSA F, MICHELANGELI F. The sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase (SERCA) is the likely molecular target for the acute toxicity of the brominated flame retardant hexabromocyclododecane (HBCD)[J]. Chem Biol Interact, 2014, 207:1-6. [18] AL-MOUSA F, MICHELANGELI F. Some commonly used brominated flame retardants cause Ca2+-ATPase inhibition, beta-amyloid peptide release and apoptosis in SH-SY5Y neuronal cells[J]. PLOS ONE, 2012, 7(4):e33059. [19] MARIUSSEN E, FONNUM F. The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles[J]. Neurochemistry International, 2003, 43(4-5):533-542. [20] SAEGUSA Y, FUJIMOTO H, WOO G H, et al. Transient aberration of neuronal development in the hippocampal dentate gyrus after developmental exposure to brominated flame retardants in rats[J]. Archives of Toxicology, 2012, 86(9):1431-1442. [21] IBHAZEHIEBO K, IWASAKI T, SHIMOKAWA N, et al. 1,2,5,6,9,10-alphaHexabromocyclododecane (HBCD) impairs thyroid hormone-induced dendrite arborization of Purkinje cells and suppresses thyroid hormone receptor-mediated transcription[J]. Cerebellum, 2011, 10(1):22-31. [22] IBHAZEHIEBO K, IWASAKI T, XU M, et al. Brain-derived neurotrophic factor (BDNF) ameliorates the suppression of thyroid hormone-induced granule cell neurite extension by hexabromocyclododecane (HBCD)[J]. Neuroscience Letters, 2011, 493(1-2):1-7. [23] FERNIE K J, MARTEINSON S C, BIRD D M, et al. Reproductive changes in American kestrels (Falco sparverius) in relation to exposure to technical hexabromocyclododecane flame retardant[J]. Environ Toxicol Chem, 2011, 30(11):2570-2575. [24] MARTEINSON S C, KIMMINS S, LETCHER R J, et al. Diet exposure to technical hexabromocyclododecane (HBCD) affects testes and circulating testosterone and thyroxine levels in American kestrels (Falco sparverius)[J]. Environ Res, 2011, 111(8):1116-1123. [25] 王晓敏, 朱丽岩, 陈学超,等. 六溴环十二烷对拟长腹剑水蚤的急性毒性和生殖发育毒性效应[J]. 中国海洋大学学报:自然科学版, 2017, 47(1):82-88. WANG X M,ZHU L Y,CHEN X C,et al. Toxic effects of HBCD on the acute toxicity,development andreproduction of oithona similes[J].Periodical of Ocean University of China,2017,47(1):82-88(in Chinese).
[26] DENG J, YU L, LIU C, et al. Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos[J]. Aquatic Toxicology, 2009, 93(1):29-36. [27] MEIJER L, WEISS J, VAN V M, et al. Serum concentrations of neutral and phenolic organohalogens in pregnant women and some of their infants in The Netherlands[J]. Environmental Science & Technology, 2008, 42(9):3428-3433. [28] NYHOLM J R, NORMAN A, NORRGREN L, et al. Maternal transfer of brominated flame retardants in zebrafish (Danio rerio)[J]. Chemosphere, 2008, 73(2):203-208. [29] JOHNSON P I, STAPLETON H M, MUKHERJEE B, et al. Associations between brominated flame retardants in house dust and hormone levels in men[J]. Sci Total Environ, 2013, 445-446:177-184. [30] DOROSH A, DĚD L, ELZEINOVÁ F, et al. Assessing oestrogenic effects of brominated flame retardants hexabromocyclododecane and tetrabromobisphenol A on MCF-7 cells[J]. Folia Biologica, 2011, 57(1):35-39. [31] 李鹏, 杨从巧, 金军,等生产源区人血清中六溴环十二烷水平与甲状腺激素相关性研究[J]. 环境科学, 2014, 35(10):3970-3976. LI P, YANG C Q, JIN J, et al. Correlations between HBCD and thyroid hormone concentrations in human serum from production source area[J]. Environment Science, 2014,35(10):3970-3976(in Chinese).
[32] EGGESBO M, THOMSEN C, JORGENSEN J V, et al. Associations between brominated flame retardants in human milk and thyroid-stimulating hormone (TSH) in neonates[J]. Environ Res, 2011, 111(6):737-743. [33] WANG F, ZHANG H, GENG N, et al. New insights into the cytotoxic mechanism of hexabromocyclododecane from a metabolomic approach[J]. Environ Sci Technol, 2016, 50(6):3145-3153. [34] ZOU W, CHEN C, ZHONG Y, et al. PI3K/Akt pathway mediates Nrf2/ARE activation in human L02 hepatocytes exposed to low-concentration HBCDs[J]. Environ Sci Technol, 2013, 47(21):12434-12440. [35] PALACE V P, PLESKACH K, HALLDORSON T, et al. Biotransformation enzymes and thyroid axis disruption in juvenile rainbow trout (Oncorhynchus mykiss) exposed to hexabromocyclododecane diastereoisomers[J]. Environmental Science & Technology, 2008, 42(6):1967-1972. [36] HONG H, SHEN R, LIU W, et al. Developmental toxicity of three hexabromocyclododecane diastereoisomers in embryos of the marine medaka Oryzias melastigma[J]. Mar Pollut Bull, 2015, 101(1):110-118. [37] HAMERS T, KAMSTRA J H, SONNEVELD E, et al. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants[J]. Toxicol Sci, 2006, 92(1):157-173. [38] ZHANG X, YANG F, XU C, et al. Cytotoxicity evaluation of three pairs of hexabromocyclododecane (HBCD) enantiomers on Hep G2 cell[J]. Toxicology in Vitro, 2008, 22(6):1520-1527. [39] TOMY G T, PLESKACH K, OSWALD T, et al. Enantioselective bioaccumulation of hexabromocyclododecane and congener-specific accumulation of brominated diphenyl ethers in an eastern Canadian Arctic marine food web[J]. Environmental Science & Technology, 2008, 42(10):3634-3639. [40] WU J P, GUAN Y T, ZHANG Y, et al. Trophodynamics of hexabromocyclododecanes and several other non-PBDE brominated flame retardants in a freshwater food web[J]. Environmental Science & Technology, 2010, 44(14):5490-5495. [41] BARGHI M, SHIN E S, SON M H, et al. Hexabromocyclododecane (HBCD) in the Korean food basket and estimation of dietary exposure[J]. Environ Pollut, 2016, 213:268-277. [42] LI H, MO L, YU Z, et al. Levels, isomer profiles and chiral signatures of particle-bound hexabromocyclododecanes in ambient air around Shanghai, China[J]. Environ Pollut, 2012, 165:140-146. [43] SHI Z, JIAO Y, HU Y, et al. Levels of tetrabromobisphenol A, hexabromocyclododecanes and polybrominated diphenyl ethers in human milk from the general population in Beijing, China[J]. Sci Total Environ, 2013, 452-453:10-18. [44] HE M J, LUO X J, YU L H, et al. Diasteroisomer and enantiomer-specific profiles of hexabromocyclododecane and tetrabromobisphenol A in an aquatic environment in a highly industrialized area, South China:Vertical profile, phase partition, and bioaccumulation[J]. Environmental Pollution, 2013, 179(8):105-110. [45] SZABO D T, DILIBERTO J J, HAKK H, et al. Toxicokinetics of the flame retardant hexabromocyclododecane gamma:Effect of dose, timing, route, repeated exposure, and metabolism[J]. Toxicological Sciences, 2010, 117(2):282-293. [46] SZABO D T, DILIBERTO J J, HAKK H, et al. Toxicokinetics of the flame retardant hexabromocyclododecane alpha:Effect of dose, timing, route, repeated exposure, and metabolism[J]. Toxicological Sciences, 2011, 121(2):234-244. [47] SANDERS J M, KNUDSEN G A, BIRNBAUM L S. The fate of β-hexabromocyclododecane in female C57BL/6 mice[J]. Toxicological Sciences, 2013, 134(2):251-257. [48] LI B, YAO T, SUN H, et al. Diastereomer-and enantiomer-specific accumulation, depuration, bioisomerization, and metabolism of hexabromocyclododecanes (HBCDs) in two ecologically different species of earthworms[J]. Sci Total Environ, 2016, 542(Pt A):427-434. [49] ZHANG Y, SUN H, LIU F, et al. Hexabromocyclododecanes in limnic and marine organisms and terrestrial plants from Tianjin, China:diastereomer-and enantiomer-specific profiles, biomagnification, and human exposure[J]. Chemosphere, 2013, 93(8):1561-1568. [50] ZHANG Y W, WANG L, SUN H W, et al. Impacts of loach bioturbation on the selective bioaccumulation of HBCDD diastereoisomers and enantiomers by mirror carp in a microcosm[J]. Chemosphere, 2016, 163:471-479. [51] ZHANG Y, RUAN Y, SUN H, et al. Hexabromocyclododecanes in surface sediments and a sediment core from rivers and harbor in the northern Chinese City of Tianjin[J]. Chemosphere, 2013, 90(5):1610-1616. [52] JANÁK K, ADRIAN COVACI, STEFAN VOORSPOELS A, et al. Hexabromocyclododecane in marine species from the western scheldt estuary:diastereoisomer-and enantiomer-specific accumulation[J]. Environmental Science & Technology, 2005, 39(7):1987-1994. [53] JANAK K, SELLSTROM U, JOHANSSON A K, et al. Enantiomer-specific accumulation of hexabromocyclododecanes in eggs of predatory birds[J]. Chemosphere, 2008, 73(1 Suppl):S193-200. [54] HARRAD S, ABDALLAH M A, COVACI A. Causes of variability in concentrations and diastereomer patterns of hexabromocyclododecanes in indoor dust[J]. Environ Int, 2009, 35(3):573-579. [55] ESSLINGER S, BECKER R, JUNG C, et al. Temporal trend (1988-2008) of hexabromocyclododecane enantiomers in herring gull eggs from the German coastal region[J]. Chemosphere, 2011, 83(2):161-167. [56] ESSLINGER S, BECKER R, MAUL R, et al. Hexabromocyclododecane enantiomers:Microsomal degradation and patterns of hydroxylated metabolites[J]. Environ Sci Technol, 2011, 45(9):3938-3944. [57] DU M, LIN L, YAN C, et al. Enantiomer-specific bioaccumulation and depuration of hexabromocyclododecanes in zebrafish (Danio Rerio)[J]. Hazard Mater, 2013, 248-249:167-171. [58] ZHANG Y, SUN H, ZHU H, et al. Accumulation of hexabromocyclododecane diastereomers and enantiomers in two microalgae, spirulina subsalsa and scenedesmus obliquus[J]. Ecotoxicol Environ Saf, 2014, 104:136-142. [59] ABDALLAH M A, UCHEA C, CHIPMAN J K, et al. Enantioselective biotransformation of hexabromocyclododecane by in vitro rat and trout hepatic sub-cellular fractions[J]. Environ Sci Technol, 2014, 48(5):2732-2740. [60] WEISS J, WALLIN E, AXMON A, et al. Hydroxy-PCBs, PBDEs, and HBCDDs in serum from an elderly population of Swedish fishermen's wives and associations with bone density[J]. Environmental Science & Technology, 2006, 40(20):6282-6289. [61] ROOSENS L, ABDALLAH M A E, HARRAD S, et al. Exposure to hexabromocyclododecanes (HBCDs) via dust ingestion, but not diet, correlates with concentrations in human serum:Preliminary results[J]. Environmental Health Perspectives, 2009, 117(11):1707-1712. [62] ABDALLAH M A E, HARRAD S. Tetrabromobisphenol A, hexabromocyclododecane and its degradation products in UK human milk:Relationship to external exposure[J]. Environment International, 2011, 37(2):443-448. [63] CARIGNAN C C, ABDALLAH M A E, WU N, et al. Predictors of tetrabromobisphenol-A (TBBP-A) and hexabromocyclododecanes (HBCD) in milk from boston mothers[J]. Environmental Science & Technology, 2012, 46(21):12146-12153. [64] ELJARRAT E, GUERRA P, MARTINEZ E, et al. Hexabromocyclododecane in human breast milk:Levels and enantiomeric patterns[J]. Environmental Science & Technology, 2009, 43(6):1940-1946. [65] HUANG X, CHEN C, SHANG Y, et al. In vitro study on the biotransformation and cytotoxicity of three hexabromocyclododecane diastereoisomers in liver cells[J]. Chemosphere, 2016, 161:251-258. [66] LI Y, ZHOU Q, WANG Y, et al. Fate of tetrabromobisphenol A and hexabromocyclododecane brominated flame retardants in soil and uptake by plants[J]. Chemosphere, 2011, 82(2):204-209. [67] WU T, WANG S, HUANG H, et al. Diastereomer-specific uptake, translocation, and toxicity of hexabromocyclododecane diastereoisomers to maize[J]. J Agric Food Chem, 2012, 60(34):8528-8534. [68] ZHU H, SUN H, ZHANG Y, et al. Uptake pathway, translocation, and isomerization of hexabromocyclododecane diastereoisomers by wheat in closed chambers[J]. Environ Sci Technol, 2016, 50(5):2652-2659. [69] HUANG H, ZHANG S, LV J, et al. Experimental and theoretical evidence for diastereomer-and enantiomer-specific accumulation and biotransformation of HBCD in maize roots[J]. Environ Sci Technol, 2016, 50(22):12205-12213. [70] MARTEINSON S C, EULAERS I, JASPERS V L, et al. Transfer of hexabromocyclododecane flame retardant isomers from captive American kestrel eggs to feathers and their association with thyroid hormones and growth[J]. Environ Pollut, 2017, 220(Pt A):441-451. [71] LAW K, PALACE V P, HALLDORSON T, et al. Dietary accumulation of hexabromocyclododecane diastereoisomers in juvenile rainbow trout (Oncorhynchus mykiss) I:Bioaccumulation parameters and evidence of bioisomerization[J]. Environmental Toxicology and Chemistry, 2006, 25(7):1757-1761. [72] ESSLINGER S, BECKER R, MUELLER-BELECKE A, et al. HBCD Stereoisomer pattern in mirror carps following dietary exposure to pure gamma-HBCD enantiomers[J]. Journal of Agricultural and Food Chemistry, 2010, 58(17):9705-9710. [73] ZHENG X, ERRATICO C, ABDALLAH M A E, et al. In vitro metabolism of BDE-47, BDE-99, and alpha-, beta-, gamma-HBCD isomers by chicken liver microsomes[J]. Environmental Research, 2015, 143:221-228. [74] ZHENG X, ERRATICO C, LUO X, et al. Oxidative metabolism of BDE-47, BDE-99, and HBCDs by cat liver microsomes:Implications of cats as sentinel species to monitor human exposure to environmental pollutants[J]. Chemosphere, 2016, 151:30-36. [75] ZEGERS B N, METS A, VAN BOMMEL R, et al. Levels of hexabromocyclododecane in harbor porpoises and common dolphins from western European seas, with evidence for stereoisomer-specific biotransformation by cytochrome P450[J]. Environmental Science & Technology, 2005, 39(7):2095-2100. [76] BRANDSMA S H, VEN L T M V D, BOER J D, et al. Identification of hydroxylated metabolites of hexabromocyclododecane in wildlife and 28-days exposed wistar rats[J]. Environmental Science & Technology, 2009, 43(15):6058-6063. [77] HAKK H, SZABO D T, HUWE J, et al. Novel and distinct metabolites identified following a single oral dose of α-or γ-hexabromocyclododecane in mice[J]. Environmental Science & Technology, 2012, 46(24):13494-13503. [78] DOMINGUEZ-ROMERO E, CARIOU R, OMER E, et al. Tissue distribution and transfer to eggs of ingested alpha-hexabromocyclododecane (alpha-HBCDD) in Laying Hens (Gallus domesticus)[J]. J Agric Food Chem, 2016, 64(10):2112-2119. [79] ZHANG Y, SUN H, RUAN Y. Enantiomer-specific accumulation, depuration, metabolization and isomerization of hexabromocyclododecane (HBCD) diastereomers in mirror carp from water[J]. Journal of Hazardous Materials, 2014, 264(10):8-15. [80] HAKK H. Comparative metabolism studies of hexabromocyclododecane (HBCD) diastereomers in male rats following a single oral dose[J]. Environ Sci Technol, 2016, 50(1):89-96. [81] KOPPEN R, BECKER R, JUNG C, et al. On the thermally induced isomerisation of hexabromocyclododecane stereoisomers[J]. Chemosphere, 2008, 71(4):656-662. -

计量
- 文章访问数: 1496
- HTML全文浏览数: 1423
- PDF下载数: 185
- 施引文献: 0