不同燃烧温度下煤中铬迁移和释放特性

李立园, 汤泉, 郑刘根, 刘旭, 储安心. 不同燃烧温度下煤中铬迁移和释放特性[J]. 环境化学, 2018, 37(3): 437-444. doi: 10.7524/j.issn.0254-6108.2017072801
引用本文: 李立园, 汤泉, 郑刘根, 刘旭, 储安心. 不同燃烧温度下煤中铬迁移和释放特性[J]. 环境化学, 2018, 37(3): 437-444. doi: 10.7524/j.issn.0254-6108.2017072801
LI Liyuan, TANG Quan, ZHENG Liugen, LIU Xu, CHU Anxin. Migration and volatilization of chromium in coal under different combustion temperatures[J]. Environmental Chemistry, 2018, 37(3): 437-444. doi: 10.7524/j.issn.0254-6108.2017072801
Citation: LI Liyuan, TANG Quan, ZHENG Liugen, LIU Xu, CHU Anxin. Migration and volatilization of chromium in coal under different combustion temperatures[J]. Environmental Chemistry, 2018, 37(3): 437-444. doi: 10.7524/j.issn.0254-6108.2017072801

不同燃烧温度下煤中铬迁移和释放特性

  • 基金项目:

    安徽省自然科学基金(1608085QD79)和国家自然科学基金(41702176,41373108)资助.

Migration and volatilization of chromium in coal under different combustion temperatures

  • Fund Project: Supported by the Science and Technology Support Program of Anhui Provinces(1608085QD79) and the National Natural Science Foundation of China(41702176, 41373108).
  • 摘要: 煤燃烧过程中,铬会挥发到大气中,污染环境.选取淮北临涣煤,利用温控电阻炉在不同温度下进行室内燃烧实验,采用逐级提取方法分析原煤及燃烧产物中铬的赋存形态,研究不同燃烧温度下煤中铬的迁移和释放特性.结果表明,煤燃烧过程中铬的释放率基本随温度的升高而升高,且不同温度下铬的释放强度不同.铬在900℃后释放较快,主要是由于高温下铁锰氧化矿物中的铬发生剧烈的氧化分解,导致铬的释放.随着燃烧温度的升高,可交换态铬、碳酸盐结合态铬、铁锰氧化物结合态铬、有机物结合态铬和残渣态铬都发生了不同程度的迁移和转化,1000℃时,5种形态铬都出现了明显地减少,表明铬发生了从固相到气相的迁移.这一结论为研究煤中铬在燃烧过程中的迁移转化提供了一定的依据.
  • 加载中
  • [1] XIANG F P, HE Y, KUMAR S, et al. Influence of hydrothermal dewatering on trace element transfer in Yimin coal[J]. Applied Thermal Engineering, 2017, 117:675-681.
    [2] LIU H M, PAN W P, WANG C B, et al. Volatilization of arsenic during coal combustion based on isothermal thermogravimetric analysis at 600-1500℃[J]. Energy Fuels, 2016, 30(8):6790-6798.
    [3] VEJAHATI F, XU Z H, GUPTA R. Trace elements in coal:Associations with coal and minerals and their behavior during coal utilizationA review[J]. Fuel, 2010, 89(4):904-911.
    [4] SWAINE D J. Why trace elements are important[J]. Fuel Processing Technology, 2000, 65(1):21-33.
    [5] SHAH P, STREZOV V, NELSON P F. Speciation of chromium in Australian coals and combustion products[J]. Fuel, 2012, 102(6):1-8.
    [6] 孔维辉, 刘文中, 陈萍. 燃煤过程中铬迁移转化和排放控制的研究进展[J]. 洁净煤技术, 2007, 13(1):53-56.

    KONG W H, LIU W Z, CHEN P. Advancement on the migration, transformation and release control of chromium in coal combustion process[J]. Clean Coal Technology, 2007, 13(1):53-56(in Chinese).

    [7] TIAN H Z, LU L, HAO J M, et al. A review of key hazardous trace elements in Chinese coals:Abundance, occurrence, behavior during coal combustion and their environmental impacts[J]. Energy Fuels, 2013, 27(2):601-614.
    [8] 王云鹤, 李海滨, 黄海涛, 等. 重金属元素在煤热解过程中的分布迁移规律[J]. 煤炭转化, 2002, 25(3):37-42.

    WANG Y H, LI H B, HUANG H T, et al. Distribution and transport of heavy metal elements during coal pyrolysis[J]. Coal Conversion, 2002, 25(3):37-42(in Chinese).

    [9] 姚多喜, 支霞臣, 郑宝山. 煤燃烧过程中5种微量元素的迁移和富集[J]. 环境化学, 2004, 23(1):31-37.

    YAO D X, ZHI X C, ZHENG B S. The transformation and concentration of 5 trace elements during coal combustion[J]. Environmental Chemistry, 2004, 23(1):31-37(in Chinese).

    [10] 周春财. 煤矸石资源化利用过程中微量元素的环境地球化学研究[D]. 合肥:中国科学技术大学, 2015. ZHOU C C. The environmental geochemistry of trace elements during the utilization of coal gangue[D]. Hefei:University of Science Technology of China, 2015(in Chinese).
    [11] LIU Y, LIU G J, QI C C, et al. Chemical speciation and combustion behavior of chromium (Cr) and vanadium (V) in coals[J]. Fuel, 2016, 184:42-49.
    [12] LU H L, CHEN H K, LI W, et al. Occurrence and volatilization behavior of Pb, Cd, Cr in Yima coal during fluidized-bed pyrolysis[J]. Fuel, 2004, 83(1):39-45.
    [13] GUO R X, YANG J L, LIU D Y, et al. The fate of As, Pb, Cd, Cr and Mn in a coal during pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2003, 70(2):555-562.
    [14] CHEN Y W, LIU G J, WANG L, et al. Occurrence and fate of some trace elements during pyrolysis of Yima Coal, China[J]. Energy and Fuels, 2008, 22(6):3877-3882.
    [15] VERMA S K, MASTO R E, GAUTAM S, et al. Investigations on PAHs and trace elements in coal and its combustion residues from a power plant[J]. Fuel, 2015, 162:138-147.
    [16] 郑以梅, 郑刘根, 李立园, 等. 淮北低硫燃煤电厂粉煤灰的理化特征[J]. 环境化学, 2017, 36(2):309-315.

    ZHENG Y M, ZHENG L G, LI L Y, et al. Physicochemical characteristics of ash from low sulphur coal-fired plant in the Huaibei City[J]. Environmental Chemistry, 2017, 36(2):309-315(in Chinese).

    [17] TANG Q, LIU G J, ZHOU C C, et al. Distribution of trace elements in feed coal and combustion residues from two coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 2013, 107(9):315-322.
    [18] 许绿丝, 程俊峰, 曾汉才. 煤燃烧过程中痕量元素As、Cd、Cr释放特性实验研究[J]. 热能动力工程, 2004, 19(5):478-482.

    XU L S, CHENG J F, ZENG H C. Experimental investigation of the release characteristics of trace elements As, Cd and Cr during the combustion of coal[J]. Journal of Engineering for Thermal Energy and Power, 2004, 19(5):478-482(in Chinese).

    [19] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7):844-851.
    [20] DAI S F, REN D Y, CHOU C L, et al. Geochemistry of trace elements in Chinese coals:A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94(3):3-21.
    [21] KETRIS M P, YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78(2):135-148.
    [22] CHEN J, LIU G J, JIANG M M, et al. Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China[J]. International Journal of Coal Geology, 2011, 88(1):41-54.
    [23] ZHENG L G, LIU G J, CHOU C L. Abundance and modes of occurrence of mercury in some low-sulfur coals from China[J]. International Journal of Coal Geology, 2008, 73(1):19-26.
    [24] 朱文渊, 徐明厚, 隋建才,等. 燃煤过程中典型痕量元素的挥发过程模拟的研究[J]. 煤炭技术, 2005, 24(9):115-117.

    ZHU W Y, XU M H, SUI J C, et al. Simulation of the vaporization of trace element during coal combustion[J]. Coal Technology, 2005, 24(9):115-117(in Chinese).

    [25] 白向飞. 中国煤中微量元素分布赋存特征及其迁移规律试验研究[D]. 北京:煤炭科学研究总院, 2003. BAI X F. The distribution, modes of occurrence and volatility of trace elements in coals of China[D]. Beijing:China Coal Research Institute, 2003(in Chinese).
    [26] GOODARZI F, HUGGINS F E. Speciation of chromium in feed coals and ash byproducts from Canadian power plants burning subbituminous and bituminous coals[J]. Energy and Fuels, 2005, 19(6):905-915.
    [27] HUGGINS F E, SEIDU L B A, SHAH N, et al. Elemental modes of occurrence in an Illinois #6 coal and fractions prepared by physical separation techniques at a coal preparation plant[J]. International Journal of Coal Geology, 2009, 78(1):65-76.
    [28] STAM A F, MEIJ R, WINKEL H T, et al. Chromium speciation in coal and biomass co-combustion products[J]. Environmental Science Technology, 2011, 45(6):2450-2456.
    [29] 刘桂建, 杨萍玥, 余明高,等. 燃煤过程有害微量元素挥发与其赋存状态及燃烧温度的关系[J]. 燃烧科学与技术, 2003, 9(1):6-10.

    LIU G J, YANG P Y, YU M G, et al. Relationship between volatilization of hazardous trace elements and their occurrences and combustion temperatures during coal combustion[J]. Journal of Combustion Science and Technology, 2003, 9(1):6-10(in Chinese).

    [30] MEIJ R. Trace element behavior in coal-fired power plants[J]. Fuel Processing Technology, 1994, 39(1-3):199-217.
    [31] ZHAO Y C, ZHANG J Y, ZHENG C G. Release and removal using sorbents of chromium from a high-Cr lignite in Shenbei coalfield, China[J]. Fuel, 2013, 109(7):86-93.
    [32] 郭瑞霞, 李宝华, 杨建丽,等. 煤转化过程中微量元素转化行为研究进展[J]. 化学通报:网络版, 2004, 67(1):1-6.

    DUO R X, LI B H, YANG J L, et al. Research overview if transformation of trace elements during coal utilization processes[J]. Chemical Online, 2004, 67(1):1-6(in Chinese).

    [33] ZHOU C C, LIU G J, XU Z Y, et al. The retention mechanism, transformation behavior and environmental implication of trace element during co-combustion coal gangue with soybean stalk[J]. Fuel, 2017, 189:32-38.
    [34] 徐荣声. 煤中矿物质在热转化过程中的演化行为[D]. 北京:中国矿业大学, 2016. XU R S. Behaviors of minerals in coal during the processes of thermal transformation[D]. Beijing:China University of Mining and Technology, 2016(in Chinese).
  • 加载中
计量
  • 文章访问数:  1783
  • HTML全文浏览数:  1734
  • PDF下载数:  277
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-07-28
  • 刊出日期:  2018-03-15
李立园, 汤泉, 郑刘根, 刘旭, 储安心. 不同燃烧温度下煤中铬迁移和释放特性[J]. 环境化学, 2018, 37(3): 437-444. doi: 10.7524/j.issn.0254-6108.2017072801
引用本文: 李立园, 汤泉, 郑刘根, 刘旭, 储安心. 不同燃烧温度下煤中铬迁移和释放特性[J]. 环境化学, 2018, 37(3): 437-444. doi: 10.7524/j.issn.0254-6108.2017072801
LI Liyuan, TANG Quan, ZHENG Liugen, LIU Xu, CHU Anxin. Migration and volatilization of chromium in coal under different combustion temperatures[J]. Environmental Chemistry, 2018, 37(3): 437-444. doi: 10.7524/j.issn.0254-6108.2017072801
Citation: LI Liyuan, TANG Quan, ZHENG Liugen, LIU Xu, CHU Anxin. Migration and volatilization of chromium in coal under different combustion temperatures[J]. Environmental Chemistry, 2018, 37(3): 437-444. doi: 10.7524/j.issn.0254-6108.2017072801

不同燃烧温度下煤中铬迁移和释放特性

  • 1.  安徽大学资源与环境工程学院, 矿山环境修复与湿地生态安全协同创新中心, 合肥, 230601;
  • 2.  安徽大学生命科学学院, 合肥, 230601
基金项目:

安徽省自然科学基金(1608085QD79)和国家自然科学基金(41702176,41373108)资助.

摘要: 煤燃烧过程中,铬会挥发到大气中,污染环境.选取淮北临涣煤,利用温控电阻炉在不同温度下进行室内燃烧实验,采用逐级提取方法分析原煤及燃烧产物中铬的赋存形态,研究不同燃烧温度下煤中铬的迁移和释放特性.结果表明,煤燃烧过程中铬的释放率基本随温度的升高而升高,且不同温度下铬的释放强度不同.铬在900℃后释放较快,主要是由于高温下铁锰氧化矿物中的铬发生剧烈的氧化分解,导致铬的释放.随着燃烧温度的升高,可交换态铬、碳酸盐结合态铬、铁锰氧化物结合态铬、有机物结合态铬和残渣态铬都发生了不同程度的迁移和转化,1000℃时,5种形态铬都出现了明显地减少,表明铬发生了从固相到气相的迁移.这一结论为研究煤中铬在燃烧过程中的迁移转化提供了一定的依据.

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回