磁溅射纸基电极-方波脉冲检测铜离子

王晓青, 孙楫舟, 佟建华, 关昕, 边超, 夏善红. 磁溅射纸基电极-方波脉冲检测铜离子[J]. 环境化学, 2018, 37(4): 897-901. doi: 10.7524/j.issn.0254-6108.2017102004
引用本文: 王晓青, 孙楫舟, 佟建华, 关昕, 边超, 夏善红. 磁溅射纸基电极-方波脉冲检测铜离子[J]. 环境化学, 2018, 37(4): 897-901. doi: 10.7524/j.issn.0254-6108.2017102004
WANG Xiaoqing, SUN Jizhou, TONG Jianhua, GUAN Xin, BIAN Chao, XIA Shanhong. Paper-based electrode chip fabricated with magnetron sputtering for Cu(Ⅱ) detection by SWV[J]. Environmental Chemistry, 2018, 37(4): 897-901. doi: 10.7524/j.issn.0254-6108.2017102004
Citation: WANG Xiaoqing, SUN Jizhou, TONG Jianhua, GUAN Xin, BIAN Chao, XIA Shanhong. Paper-based electrode chip fabricated with magnetron sputtering for Cu(Ⅱ) detection by SWV[J]. Environmental Chemistry, 2018, 37(4): 897-901. doi: 10.7524/j.issn.0254-6108.2017102004

磁溅射纸基电极-方波脉冲检测铜离子

  • 基金项目:

    国家自然科学基金(61401433,61671433)和973项目(2015CB352100)资助.

Paper-based electrode chip fabricated with magnetron sputtering for Cu(Ⅱ) detection by SWV

  • Fund Project: Supported by the National Natural Science Foundation of China (61401433,61671433) and National Basic Research Program of China(2015CB352100).
  • 摘要: 近年来,水污染事件频繁发生,重金属离子如铜离子等因水污染可经食物链威胁人类健康,因此开展重金属离子监测具有十分重要的意义.阳极溶出伏安法准确度高,操作简单,检测设备便于微型化,适于重金属离子的现场快速检测.本文以硝酸纤维素膜为基底,采用磁控溅射技术制备的纸基金传感电极,具有比表面积大,电极表面微结构丰富等优势,无需进行敏感膜修饰,在电化学分析过程中能够实现高灵敏检测.采用方波脉冲伏安法测试了芯片对Cu2+的响应特性,在5-1000 μg·L-1范围内线性相关性良好,检测下限为2 μg·L-1.
  • 加载中
  • [1] YUAN J, GAPONIK N, EYCHMVLLER A. Application of polymer quantum dot-enzyme hybrids in the biosensor development and test paper fabrication[J]. Analytical Chemistry, 2012, 84(11):5047-5052.
    [2] CHAI X L, CHANG X J, HU Z, et al. Solid phase extraction of trace Hg(Ⅱ) on silica gel modified with 2-(2-oxoethyl) hydrazine carbothioamide and determination by ICP-AES[J]. Talanta, 2010, 82(5):1791-1796.
    [3] WU H, WANG X C, LIU B, et al. Simultaneous speciation of inorganic arsenic and antimony in water samples by hydride generation-double channel atomic fluorescence spectrometry with on-line solid-phase extraction using single-walled carbon nanotubes micro-column[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2011, 66(1):74-80.
    [4] 王晋芬, 边超, 佟建华,等. 基于纳米金修饰的两种无汞型重金属微传感器的对比研究[J]. 分析化学, 2012, 40(12):1791-1796.

    WANG J F, BIAN C, TONG J H, et al. Comparison of mercury-free microsensors based on gold nanoparticles for heavy metals detection[J]. Chinese Journal of Analytical Chemistry, 2012, 40(12):1791-1796(in Chinese).

    [5] 周建红. 纳米金属氧化物修饰电极的制备及其在环境分析中的应用[D]. 长沙:中南大学, 2011. ZHOU J H. Fabrication of modified electrodes and its application in environmental determination with nanostructured metal oxides[D]. Changsha:Central South University, 2011(in Chinese).
    [6] ZHU X X, TONG J H, BIAN C, et al. The polypyrrole/multiwalled carbon nanotube modified Au microelectrode for sensitive electrochemical detection of trace levels of Pb2+[J]. Micromachines, 2017, 8(3):86.
    [7] MARTINEZ A W, PHILLIPS S T, CARRILHO E, et al. Simple telemedicine for developing regions:Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis[J]. Analytical Chemistry, 2008, 80(10):3699-3707.
    [8] LÓPEZ MARZO A M, PONS J, BLAKE D A, et al. All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters[J]. Analytical Chemistry, 2013, 85(7):3532-3538.
    [9] FENG L, LI X, LI H, et al. Enhancement of sensitivity of paper-based sensor array for the identification of heavy-metal ions[J]. Analytica Chimica Acta, 2013, 780:74-80.
    [10] CATE D M, DUNGCHAI W, CUNNINGHAM J C, et al. Simple, distance-based measurement for paper analytical devices[J]. Lab on A Chip, 2013, 13(12):2397-2404.
    [11] JIANG D L, JI J, AN L, et al. Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin)[J]. Biosensors & Bioelectronics, 2013, 50(24):150-156.
    [12] FENG L, LI H, NIU L Y, et al. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions[J]. Talanta, 2013, 108(8):103-108.
    [13] ABE K, KOTERA K, SUZUKI K, et al. Inkjet-printed paperfluidic immuno-chemical sensing device[J]. Analytical & Bioanalytical Chemistry, 2010, 398(2):885-893.
    [14] SWERIN A, MIRA I. Ink-jettable paper-based sensor for charged macromolecules and surfactants[J]. Sensors & Actuators B Chemical, 2014, 195(5):389-395.
    [15] WANG S W, GE L, ZHANG Y, et al. Battery-triggered microfluidic paper-based multiplex electrochemiluminescence immunodevice based on potential-resolution strategy[J]. Lab on A Chip, 2012, 12(21):4489-4498.
  • 加载中
计量
  • 文章访问数:  1013
  • HTML全文浏览数:  978
  • PDF下载数:  241
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-10-20
  • 刊出日期:  2018-04-15
王晓青, 孙楫舟, 佟建华, 关昕, 边超, 夏善红. 磁溅射纸基电极-方波脉冲检测铜离子[J]. 环境化学, 2018, 37(4): 897-901. doi: 10.7524/j.issn.0254-6108.2017102004
引用本文: 王晓青, 孙楫舟, 佟建华, 关昕, 边超, 夏善红. 磁溅射纸基电极-方波脉冲检测铜离子[J]. 环境化学, 2018, 37(4): 897-901. doi: 10.7524/j.issn.0254-6108.2017102004
WANG Xiaoqing, SUN Jizhou, TONG Jianhua, GUAN Xin, BIAN Chao, XIA Shanhong. Paper-based electrode chip fabricated with magnetron sputtering for Cu(Ⅱ) detection by SWV[J]. Environmental Chemistry, 2018, 37(4): 897-901. doi: 10.7524/j.issn.0254-6108.2017102004
Citation: WANG Xiaoqing, SUN Jizhou, TONG Jianhua, GUAN Xin, BIAN Chao, XIA Shanhong. Paper-based electrode chip fabricated with magnetron sputtering for Cu(Ⅱ) detection by SWV[J]. Environmental Chemistry, 2018, 37(4): 897-901. doi: 10.7524/j.issn.0254-6108.2017102004

磁溅射纸基电极-方波脉冲检测铜离子

  • 1.  中国科学院电子学研究所传感技术联合国家重点实验室, 北京, 100190;
  • 2.  中国科学院大学, 北京, 100190
基金项目:

国家自然科学基金(61401433,61671433)和973项目(2015CB352100)资助.

摘要: 近年来,水污染事件频繁发生,重金属离子如铜离子等因水污染可经食物链威胁人类健康,因此开展重金属离子监测具有十分重要的意义.阳极溶出伏安法准确度高,操作简单,检测设备便于微型化,适于重金属离子的现场快速检测.本文以硝酸纤维素膜为基底,采用磁控溅射技术制备的纸基金传感电极,具有比表面积大,电极表面微结构丰富等优势,无需进行敏感膜修饰,在电化学分析过程中能够实现高灵敏检测.采用方波脉冲伏安法测试了芯片对Cu2+的响应特性,在5-1000 μg·L-1范围内线性相关性良好,检测下限为2 μg·L-1.

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回