一株嗜酸硫单质还原菌的分离鉴定及其在酸性重金属废水处理中的作用
Isolation and identification of a sulfur-reducing bacterium and its role in treatment of heavy metal-loaded acidic wastewater
-
摘要: 采用Hungate厌氧滚管法,从酸性重金属废水中筛选了1株嗜酸性的硫单质还原菌NAU-16.经形态学和16S rDNA基因序列分析鉴定为脱硫菌属硫磺细菌种Desulfurella amilsii.研究了其在不同温度(20—60 ℃)、pH(1.0—7.0)和碳源(乙酸、丙醇、乳酸、葡萄糖、丙三醇、丙酮酸)条件下的生长特性,并通过序批式厌氧瓶培养考察了该菌株对污泥生物沥浸酸液中Zn2+、Cu2+、Ni2+的去除效果.结果表明,菌株NAU-16最适生长温度为35—45 ℃,可在pH值3.0—7.0范围内较好生长,能利用乙酸、葡萄糖作为电子供体和碳源.同时,Desulfurella amilsii NAU-16介导的生物硫单质还原可有效处理含Zn2+、Cu2+、Ni2+的污泥生物沥浸酸液.对于初始pH 3.0—4.0的沥浸液,处理12 d,Zn2+、Cu2+的去除率达99%以上,Ni2+的去除率90%—99%.上述研究结果为酸性重金属废水生物处理提供了一种新途径.Abstract: Strain NAU-16 was isolated from heavy metal-loaded acidic wastewater by the method of Hungate operation. According to its morphology and 16S rDNA gene sequencing, this strain was identified to be Desulfurella amilsii. Its growth property and sulfur reduction ability at different temperatures (20-60℃), initial pH (1.0-7.0) and electron donors (acetate, propionate, lactate, glucose, glycerol, pyruvate) were investigated. The role of this strain in removing heavy metals in acid wastewater containing Zn2+, Cu2+, Ni2+ were evaluated in sequencing batch. The results showed that strain NAU-16 growed at optimum temperatures from 35℃ to 45℃ and a broad pH range from 3.0 to 7.0. It was able to couple the oxidation of acetate and glucose to the reduction of elemental sulfur. Furthermore, this isolate-mediated biological sulfur reduction strain NAU-16 showed efficient removal of Zn2+, Cu2+, Ni2+. Up to 99% Zn2+, Cu2+ and up to 90%-99% Ni2+ were removed after 12 days, with initial pH 3.0 and 4.0 treatment. Strain NAU-16 could be a good candidate to cope with low pH and high metal concentration wastewater.
-
-
[1] SÁNCHEZ A I, STAMS A J M, WEIJMA J, et al. A case in support of implementing innovative bio-processes in the metal mining industry[J]. FEMS Microbiology Letters, 2016, 363(11): 1-4. [2] 吴惠明,李晓,李锦文等.模拟风化过程硫铁矿尾矿的产酸性及污染物的释放行为[J].环境化学,2014,33(3): 447-451. WU H M, LI X, LI J W, et al. Acid generation behavior of pyrite tailing and characteristic of pollutant release during simulated weathering process[J].Environmental Chemistry, 2014, 33(3): 447-451(in Chinese).
[3] ROJO A, HANSEN H K. Electrodialytic remediation of copper mine tailings with sinusoidal electric field[J]. Journal of Applied Electrochemistry, 2010,40(6): 1095-1100. [4] CASTILLO J, PÉREZLÓPEZ R, CARABALLO M A, et al. Biologically-induced precipitation of sphaleriteewurtzite nanoparticles by sulfate-reducing bacteria: implicationsfor acid mine drainage treatment[J]. Science of the Total Environment, 2012, 423(15): 176-184. [5] DENG D, WEIDHAAS J L, LIN L S. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage[J]. Journal of Hazardous Materials, 2016, 305: 200-208. [6] KEFENI K K, MSAGATI T A M, MAMBA B B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review[J]. Journal of Cleaner Production, 2017, 151: 475-493. [7] SÁNCHEZ A I, SANZ J L, MARTIJN F M, et al. Sulfate reduction at low pH to remediate acid mine drainage[J]. Journal of Hazardous Materials, 2014, 269: 98-109. [8] ZHANG M, WANG H. Preparation of immobilized sulfate reducing bacteria(SRB)granules for effective bioremediation of acid mine drainage and bacterial community analysis[J]. Minerals Engineering, 2016, 92: 63-71. [9] MILETTO M. Sulfate-reducing Prokaryotes in River Floodplains[D]. Utrecht: Utrecht University, 2007. [10] ZHANG M, WANG H. Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage[J]. Minerals Engineering, 2014, 69: 81-90. [11] FLORENTINO A P, BRIENZA C, ALFONS J M, et al. Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3): 1249-1253. [12] SOROKIN D Y, MUYZER G. Desulfurispira natronophila gen. nov. sp. nov.: An obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes[J]. Extremophiles, 2010, 14(4): 349-355. [13] 张鹏飞. 硫生物还原的影响因素及其在酸性重金属废水处理中的作用[D]. 南京: 南京农业大学, 2017. ZHANG P F. Influence factors of biological sulfur reduction and its application in treatment of acidic wastewater[D]. Nanjing: Nanjing Agricultural University(in Chinese).
[14] FLORENTINO A P, WEIJMA J, ALFONS J M, et al. Sulfur Reduction in Acid Rock Drainage Environments[J]. Environmental Science & Technology, 2015, 49(19):11746-11755. [15] RAINEY F, HOLLEN B. Bergey's Manual of Systematics of Archaea and Bacteria[M].Hoboken: John Wiley & Sons, Ltd, 2015. [16] PFENNIG N, BIEBL H. Desulfuromonas acetoxidansgen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate oxidizing bacterium[J]. Archives of Microbiology, 1976, 110: 3-12. [17] HEDDERICH R, KLIMMEK O, KRÖGER Ac, et al. Anaerobic respiration with elemental sulfur and with disulfides[R].FEMS Microbiology Reviews,1998, 22(5): 353-381. [18] 李 陛,吴文芳,李金华,等. 温度和电子传递体AQDS对铁还原细菌Shewanella putrefaciens CN32矿化产物的影响[J].地球物理学报,2011, 54(10): 2631-2638. LI B, WU F W, LI J H, et al. Effects of temperature on biomineralization of iron reducing bacteria Shewanella putrefaciens CN32[J]. Chinese Journal of Geophysics, 2011,54(10): 2631-2638(in Chinese).
[19] FAUQUE G D, BARTON L L. Chapter 1-hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes[J]. Advances in Microbial Physiology, 2012, 60: 1-90. [20] FLORENTINO A P WEIJMA J, ALFONS J M, et al. Biotechnology of Extremophiles[M].Berlin: Springer, 2016: 141-175. [21] FANG D, ZHANG R C, ZHOU L X, et al. A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment[J]. Journal of Hazardous Materials 2011, 192(1): 226-233. [22] SUN R R, ZHANG L, ZHANG Z F, et al. Realizing high-rate sulfur reduction under sulfate-rich conditions in abiological sulfide production system to treat metal-laden wastewater deficient in organic matter[J]. Water Research, 2018, 131: 239-245. -

计量
- 文章访问数: 1198
- HTML全文浏览数: 1186
- PDF下载数: 97
- 施引文献: 0