介质阻挡放电强化沸石处理氨氮废水
Removal of aqueous ammonia nitrogen with permutite ehanced by dielectric barrier discharge
-
摘要: 本文采用介质阻挡放电(DBD)强化沸石处理废水中的氨氮,比较了人造沸石、4A沸石分子筛、13X沸石分子筛等3种沸石对氨氮的去除效果,去除率分别为84.84%、17.54%、16.65%.DBD强化人造沸石对氨氮废水去除效果最佳,两者表现出了良好的协同去除氨氮作用.采用单因素实验和正交实验考察了放电电压、放电间距、放电频率等电气参数对氨氮处理的影响.研究结果表明,最佳实验参数为:放电间距0 mm,放电电压22 kV,放电频率14.5 kHz,20-40目人造沸石投加量10 g·L-1,处理20 min,初始浓度100 mg·L-1的模拟氨氮废水去除率达84.84%.在协同体系中,DBD产生的高压电场、热效应加速了离子的迁移,冲击波和超声等增加了分子、离子与沸石颗粒的碰撞几率.氨氮克服沸石表面界膜阻力的能力增加,促使沸石表面吸附的氨氮向沸石内部迁移,氨氮更易被去除.Abstract: In this study, enhanced removal of aqueous ammonia nitrogen with zeolite by dielectric barrier discharge (DBD) were investigated. Three types of synthetic zeolites, permutite, molecular sieves type 4A, and molecular sieves type 13X were compared for ammonia nitrogen removal. The removal rates were 84.84%, 17.54% and 16.65%, respectively. Permutite showed the best synergistic effect with DBD on ammonia nitrogen removal. The effects of electrical parameters such as peak voltage, discharge distance, and discharge frequency were evaluated by single factor experiment and orthogonal experiment. The results showed that the optimum electrical parameters were discharge distance 0 mm, peak voltage 22 kV, discharge frequency 14.5 kHz when the ammonia nitrogen concentration was 100 mg·L-1 and 20-40 mesh permutite dosage was 10 g·L-1. The removal rate was 84.84% after 20 min treatment. In the synergistic system, the high-voltage electric field and thermal effects generated by DBD accelerated the migration of the ions in the water. The blast and ultrasound generated by DBD increased the collision between molecules, ions and permutite. The ability of ammonia nitrogen overcoming the resistance of permutite surface boundary increased and then promoted its migration from the surface into the inside of permutite. Therefore, ammonia nitrogen was more easily removed.
-
Key words:
- ammonia nitrogen wastewater /
- permutite /
- dielectric barrier discharge /
- synergistic
-
-
[1] 杨云, 宋梦然, 于萍,等. 人造沸石对氨氮废水的吸附及其电化学再生研究[J]. 工业水处理, 2017, 37(10):65-68. YANG Y, SONG M G, YU P, et al. Research on the artificial zeolite adsorption for ammonia nitrogen wastewater and its electrochemical regeneration[J]. Industrial Water Treatment, 2017, 37(10):65-68(in Chinese).
[2] 丁真贞, 孟绫, 董建勋,等. 改性斜发沸石处理高浓度氨氮废水[J]. 环境化学, 2012, 31(8):1232-1237. DING Z Z, MENG L, DONG J X, et al. Removal of ammonnia-nitrogen in simulated NH4+-N wastewater with modified clinoptilolite[J]. Environmental Chemistry, 2012, 31(8):1232-1237(in Chinese).
[3] 李丹,沈存花,刘佛财,等. 低浓度氨氮废水处理技术研究进展[J]. 应用化工,2018,47(6):1274-1280. LI D, SHEN C H, LIU F C, et al. Progress in the treatment technology of low-concentration ammonium-nitrogen water[J]. Applied Chemical Industry, 2018, 47(6):1274-1280(in Chinese).
[4] 赖祖明, 胡琴, 赖兴. 一种新型高浓度氨氮废水资源化回收工艺的研发和应用[J]. 江汉石油职工大学学报, 2017, 30(1):59-61. LAI Z M, HU Q, LAI X. Development and application of a new-type resource recycling processing of high-concentration ammonia-nitrogen wastewater[J]. Journal of Jiang Han Petroleum University of Staff and Workers, 2017, 30(1):59-61(in Chinese).
[5] ZHANG M, ZHANG H, XU D, et al. Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method[J]. Desalination, 2011, 271(1-3):111-121. [6] DONG Y B, LIN H. Ammonia nitrogen removal from aqueous solution using zeolite modified by microwave-sodium acetate[J]. Journal of Central South University, 2016, 23:1345-1352. [7] OTAL E, VILCHES L F, LUNA Y, et al. Ammonium ion adsorption and settle ability improvement achieved in a synthetic zeolite-amended activated sludge[J]. Chinese Journal of Chemical Engineering, 2013, 21(9):1062-1068. [8] 周健, 胡晓静, 李凯荣, 等. 4A分子筛处理高浓度氨氮废水[J]. 环境化学, 2010, 29(5):943-947. ZHOU J, HU X J, LI K R, et al. Removal of high-concentration ammonia-nitrogen wastewater with 4A molecular sieve[J]. Environmental Chemistry, 2010, 29(5):943-947(in Chinese).
[9] LEI L, LI X, ZHANG X. Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite[J]. Separation & Purification Technology, 2008, 58(3):359-366. [10] WANG S, PENG Y. Natural zeolites as effective adsorbents in water and wastewater treatment[J]. Chemical Engineering Journal,2010, 156(1):11-24. [11] 张新颖, 余杨波, 王美银,等. 天然斜发沸石的氨氮改性吸附与化学再生[J]. 环境化学, 2016, 35(5):1058-1066. ZHANG X Y, YU Y B, WANG M Y, et al. Modification and chemical regeneration of natural clinoptilolite for ammonium nitrogen adsorption[J]. Environmental Chemistry, 2016, 35(5):1058-1066(in Chinese).
[12] 桂花, 谭伟, 李彬,等. 4A沸石分子筛处理中低浓度氨氮废水[J]. 环境工程学报, 2014, 8(5):1944-1950. GUI H, TANW, LI B, et al. Removal ammonia-nitrogen from medium-low concentration wastewater by 4A zeolite molecular sieve[J]. Chinese Journal of Environmental Engineering, 2014, 8(5):1944-1950(in Chinese).
[13] 张曦, 吴为中, 温东辉,等. 氨氮在天然沸石上的吸附及解吸[J]. 环境化学, 2003, 22(2):166-171. ZHANG X, WU W Z, WEN D H, et al. Adsorption and desorption of ammonia-nitrogen onto natural zeolite[J]. Environmental Chemistry, 2003, 22(2):166-171(in Chinese).
[14] 张燕, 吕宪俊, 曹晓强,等. NaCl改性人造沸石去除废水中氨氮的性能及其影响因素[J]. 生态与农村环境学报, 2013, 29(4):507-511. ZHANG Y, LV X J, CAO X Q, et al. Performance of NaCl-modified artificial zeolite in removing ammonia nitrogen from wastewater and its influencing factors[J]. Journal of Ecology and Rural Environment, 2013, 29(4):507-511(in Chinese).
[15] DONG Y, LIN H, HE Y. Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen[J]. Environmental Monitoring & Assessment, 2017, 189(3):107. [16] YUSOF A M, KEAT L K, IBRAHIM Z, et al. Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite.[J]. Journal of Hazardous Materials, 2010, 174(1-3):380-385. [17] SUGAWARA T, MATSUURA Y, ANZAI T, et al. Removal of ammonia nitrogen from water by magnetic zeolite and high-gradient magnetic separation[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4):1-4. [18] WANG T, QU G, REN J, et al. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.[J]. Water Research, 2015, 2(1), 89:28-38. [19] 孙玉, 田露, 李蕊,等. Fenton-like/TiO2催化介质阻挡放电体系对活性艳蓝的降解[J]. 环境工程学报, 2016, 10(6):2819-2825. SUN Y, TIAN L, LI R, et al. Degradation of reactive brilliant blue by dielectric barrier discharge combined with Fenton-like/TiO2[J]. Chinese Journal of Environmental Engineering, 2016, 10(6):2819-2825(in Chinese).
[20] WU H X,FANG Z,ZHOU T,et al.Discoloration of congo red by rod-plate dielectric barrier discharge processes at atmospheric pressure[J].Plasma Science & Technology,2016,18(5):500-505. [21] 赵坤, 党小庆, 朱海瀛,等. 负载型催化剂联合低温等离子体去除甲苯[J]. 环境工程学报, 2016, 10(7):3756-3762. ZHAO K, DANG X Q, ZHU H Y, et al. Removal of toluene using of non-thermal plasma combined with supported catalysts[J]. Chinese Journal of Environmental Engineering, 2016, 10(7):3756-3762(in Chinese).
[22] 董冰岩, 黄尝伟, 江小华,等. 脉冲放电协同负载型氧化物催化剂降解甲醛[J]. 环境工程学报, 2015, 9(10):4947-4952. DONG B Y, HUANG C W, JIANG X H, et al. Degradation of formaldehyde by pulse discharge combined with supported oxide catalyst[J]. Chinese Journal of Environmental Engineering, 2015, 9(10):4947-4952(in Chinese).
[23] 孙明, 郝夏桐, 鲁晓辉,等. 气液两相脉冲放电反应器的设计及其对酸性橙Ⅱ的降解效果[J]. 高电压技术, 2015,41(2):498-503. SUN M, HAO X T, LU X H, et al. A reactor design of gas-liquid two-phase pulse discharge and its performance in degrading acid orangeⅡ[J]. High Voltage Engineering, 2015, 41(2):498-503(in Chinese).
[24] 于欣, 刘洪波, 孔令江. MCM-41介孔分子筛水热结构稳定性对介质阻挡放电脱除甲苯的影响[J]. 环境化学, 2007,26(3):280-283. YU X, LIU H B, KONG L J, et al. The effects of hydrothermal stabilization of MCM-41 on plasma-catalysis process for removing toluene[J]. Environmental Chemistry, 2007, 26(3):280-283(in Chinese).
[25] 武海霞, 殷宝剑, 方志,等. 铋酸钠催化大气压介质阻挡放电降解苯胺[J]. 强激光与粒子束, 2017, 29(5):148-154. WU H X, YIN B J, FANG Z, et al. Degradation of aniline by dielectric barrier discharge combined with sodium bismuthate[J].High Power Laser and Particle Beams, 2017, 29(5):148-154(in Chinese).
[26] 吕双春, 葛云丽, 赵倩,等. 高硅分子筛的合成及其在VOCs吸附去除领域的应用[J]. 环境化学, 2017, 36(7):1492-1505. LV S C, GE Y L, ZHAO Q, et al. Synthesis of high silica molecular sieves and their application in VOCs adsorption removal[J]. Industrial Water Treatment, 2017, 36(7):1492-1505(in Chinese).
[27] 曲珍杰. 超声强化人造沸石处理高浓度氨氮废水[D]. 南京:南京工业大学, 2016. QU Z J. Ultrasonic treatment of high-concentration ammonia nitrogen wastewater by modified zeilite[D]. Nanjing:Nanjing Technology University, 2016(in Chinese). [28] PÂRVULESCU V I, MAGUREANU M, LUKES P. Plasma chemistry and catalysis in gases and liquids[M].Germany:Wiley-VCH Verlag GmbH & Co. KGaA, 2012. [29] OU H H, LIAO C H, LIOU Y H, et al. Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes[J]. Environmental Science & Technology, 2008, 42(12):4507-4512. [30] 任海涛.Ag增强TiO2和g-C3N4复合材料光催化转化含氮和苯酚污染物的研究[D]. 天津:天津大学,2015. REN H T. Photocatalytic transformation of nitrogen and phenol contaminants by Ag enhanced TiO2 and g-C3N4 [31] 姜理英, 曹书岭, 朱润晔,等. 介质阻挡放电对氯苯的降解特性及其产物分析[J]. 环境科学, 2015, 36(3):831-838. JIANG L Y, CAO S L, ZHU R H, et al. Analysis of characteristics and products of chlorobenzene degradation with dielectric barrier discharge[J]. Environmental Chemistry, 2015, 36(3):831-838(in Chinese).
[32] 孙广垠, 宋萌. 低温等离子体技术降解甲基橙染料废水[J]. 中国给水排水, 2016, 32(21):96-99. SUN G Y, SONG M. Degradation of methyl orange dye wastewater by non-thermal plasma technology[J]. China Water & Wastewater, 2016, 32(21):96-99(in Chinese).
-

计量
- 文章访问数: 1573
- HTML全文浏览数: 1548
- PDF下载数: 112
- 施引文献: 0