生物焦微观特性及分子结构研究

贾里, 姚禹星, 韩飞, 樊保国, 郑仙荣, 乔晓磊, 金燕. 生物焦微观特性及分子结构研究[J]. 环境化学, 2019, 38(4): 876-886. doi: 10.7524/j.issn.0254-6108.2018061204
引用本文: 贾里, 姚禹星, 韩飞, 樊保国, 郑仙荣, 乔晓磊, 金燕. 生物焦微观特性及分子结构研究[J]. 环境化学, 2019, 38(4): 876-886. doi: 10.7524/j.issn.0254-6108.2018061204
JIA Li, YAO Yuxing, HAN Fei, FAN Baoguo, ZHENG Xianrong, QIAO Xiaolei, JIN Yan. Microscopic characteristics and molecular structure of biomass char[J]. Environmental Chemistry, 2019, 38(4): 876-886. doi: 10.7524/j.issn.0254-6108.2018061204
Citation: JIA Li, YAO Yuxing, HAN Fei, FAN Baoguo, ZHENG Xianrong, QIAO Xiaolei, JIN Yan. Microscopic characteristics and molecular structure of biomass char[J]. Environmental Chemistry, 2019, 38(4): 876-886. doi: 10.7524/j.issn.0254-6108.2018061204

生物焦微观特性及分子结构研究

  • 基金项目:

    国家自然科学基金(U1510135,U1510129)资助.

Microscopic characteristics and molecular structure of biomass char

  • Fund Project: Supported by the National Natural Science Foundation of China (U1510135,U1510129).
  • 摘要: 本文利用多种表征手段,研究了汞吸附剂核桃壳生物焦的热解特性、孔隙结构与官能团等微观特性,并基于所获得的化学结构利用ChemBioOffice构建了生物焦的分子结构单体模型.结果表明,生物质的热解过程分为三个阶段,所形成的生物焦孔隙发达,并含有丰富的表面官能团.生物焦的大分子结构中芳香碳是主要组成部分,而脂肪碳则起到联结芳香结构单元的作用.而且生物焦是一种短程有序的非晶态物质,结构中存在一定数量的石墨微晶结构.基于表征结果,所构建的分子模型以芳香结构为主,并含有1个甲基、4个羟基以及8个羰基,分子式为C55H37NO14,Mr=935.同时对模型进行了验证.另外,基于分子力学,在UFF、Dreiding和MM2,3种力场下对三维模型进行了结构优化,其中UFF力场优化后的三维结构的总势能最大,而MM2力场势能最小.利用量子化学半经验PM6方法对3种优化后构象的生成热进行了研究,其中Dreiding力场下优化的结构更稳定.
  • 加载中
  • [1] SYVERSEN T,KAUR P.The toxicology of mercury and its compounds[J].Journal of Trace Elements in Medicine & Biology,2012,26(4):215-226.
    [2] ZHANG L, WONG M H. Environmental mercury contamination in China:Sources and impacts[J]. Environment International, 2007, 33(1):108-121.
    [3] GBOR P K, WEN D, MENG F, et al. Improved model for mercury emission, transport and deposition[J]. Atmospheric Environment, 2006, 40(5):973-983.
    [4] ZENG H, FENG J, GUO J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon[J]. Fuel, 2004, 83(1):143-146.
    [5] GRAYDON J W, ZHANG X, KIRK D W, et al. Sorption and stability of mercury on activated carbon for emission control[J]. Journal of Hazardous Materials, 2009, 168(2-3):978-982.
    [6] 贾里, 李犇, 乔晓磊,等. 生物焦对燃煤发电机组废水中汞的吸附特性及机理研究[J]. 环境工程, 2018, 36(4):28-33.

    JIA L, LI B, QIAO X L, et al. Study on adsorption characteristics and mechanism of mercury on biomass char in coal-fired unit wastewater[J]. Environmental Engineering, 2018, 36(4):28-33(in Chinese).

    [7] FAN B G, JIA L, YAO Y X, et al. Study on the effects of the pyrolysis atmosphere on the elemental mercury adsorption characteristics and mechanism of biomass char[J]. Energy & Fuels, 2018, 32(6):6869-6878.
    [8] 陈昌国, 鲜学福. 煤结构的研究及其发展[J]. 煤炭转化, 1998, 21(2):7-13.

    CHEN C G, XIAN X F. Progress in the research of coal structure[J]. Coal Conversion, 1998, 21(2):7-13 (in Chinese).

    [9] WISER W H, SINGH S, QADER S A, et al. Catalytic hydrogenation of multiring aromatic coal tar constituents[J]. Am. Chem. Soc. Div. Fuel Chem. Prepr (United States), 1970, 9(3):350-357.
    [10] CARLSON G A. Computer simulation of the molecular structure of bituminous coal[J]. Energy & Fuels, 1992, 6(6):771-778.
    [11] ROUCHES E, DIGNAC M F, CARRERE H. Pyrolysis-GC-MS to assess the fungal pretreatment efficiency for wheat straw anaerobic digestion[J]. Journal of Analytical & Applied Pyrolysis, 2017, 123:409-418.
    [12] JIA L, FAN B G, LI B, et al. Effects of pyrolysis mode and particle size on the microscopic characteristics and mercury adsorption characteristics of biomass Char[J]. Bioresources, 2018, 13(3):5450-5471.
    [13] NEWALKAR G, ⅡSA K, D'AMICO A D, et al. Effect of temperature, pressure, and residence time on pyrolysis of pine in an entrained flow reactor[J]. Energy & Fuels, 2014, 28(8):5144-5157.
    [14] SANCHEZ-SILVA L, LÓPEZ-GONZÁLEZ D, VILLASEÑOR J, et al. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis[J]. Bioresource Technology, 2012, 109:163-172.
    [15] 贾里, 李犇, 徐樑,等. 不同制备条件对生物焦汞吸附特性及吸附动力学的影响[J]. 环境工程学报, 2018, 12(1):134-144.

    JIA L, LI B, XU L, et al. Effects of different preparation conditions on kinetics and adsorption of mercury by biomass char[J]. Chinese Journal of Environmental Engineering, 2018, 12(1):134-144 (in Chinese).

    [16] ANTAL M J, VARHEGYI G. Cellulose pyrolysis kinetics:The current state of knowledge[J]. Industrial & Engineering Chemistry Research, 1995, 34(3):703-717.
    [17] JARZ,BSKI A B, LORENC J, ARISTOV Y I, et al. Porous texture characteristics of a homologous series of base-catalyzed silica aerogels[J]. Journal of Non-Crystalline Solids, 1995, 190(3):198-205.
    [18] 樊保国, 贾里, 李晓栋,等. 电站燃煤锅炉飞灰特性对其吸附汞能力的影响[J]. 动力工程学报, 2016, 36(8):621-628.

    FAN B G, JIA L, LI X D, et al. Study on mercury adsorption by fly ash from coal-fired boilers of power plants[J]. Journal of Chinese Society of Power Engineering, 2016, 36(8):621-628 (in Chinese).

    [19] PARK H J, PARK S H, SOHN J M, et al. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts[J]. Bioresource Technology, 2010, 101 (Suppl 1):S101-S103.
    [20] KEOWN D M, HAYASHI J I, LI C Z. Drastic changes in biomass char structure and reactivity upon contact with steam[J]. Fuel, 2008, 87(7):1127-1132.
    [21] BABU B V, SHETH P N. Modeling and simulation of reduction zone of downdraft biomass gasifier:Effect of char reactivity factor[J]. Energy Conversion & Management, 2006, 47(15-16):2602-2611.
    [22] KOCH A, KRZTON A, FINQUENEISEL G, et al. A study of carbonaceous char oxidation in air by semi-quantitative FTIR spectroscopy[J]. Fuel, 1998, 77(6):563-569.
    [23] IBARRA J, MUÑOZ E, MOLINER R. FTIR study of the evolution of coal structure during the coalification process[J]. Organic Geochemistry, 1996, 24(6):725-735.
    [24] 张璧, 罗光前, 徐萍,等. 活性炭表面含氧官能团对汞吸附的作用[J]. 工程热物理学报, 2015, 36(7):1611-1615.

    ZHANG B, LUO G Q, XU P, et al. Effect of oxygen functional groups of activated carbon on mercury adsorption[J]. Journal of Engineering Thermophysics, 2015, 36(7):1611-1615 (in Chinese).

    [25] KEOWN D M, LI X J, HAYASHI J, et al. Characterization of the structural features of char from the pyrolysis of cane trash using fourier transform-raman spectroscopy[J]. Energy Fuels, 2007, 21(3):1816-1821.
    [26] LAURENDEAU N M. Heterogeneous kinetics of coal char gasification and combustion[J]. Progress in Energy & Combustion Science, 1978, 4(4):221-270.
    [27] SOLOMON P R, HAMBLEN D G, CARANGELO R M, et al. Models of tar formation during coal devolatilization[J]. Combustion & Flame, 1988, 71(2):137-146.
    [28] PUENTE G D L, IGLESIAS M J, FUENTE E, et al. Changes in the structure of coals of different rank due to oxidation-effects on pyrolysis behaviour[J]. Journal of Analytical & Applied Pyrolysis, 1998, 47(1):33-42.
    [29] ARENILLAS A, PEVIDA C, RUBIERA F, et al. Characterisation of model compounds and a synthetic coal by TG/MS/FTIR to represent the pyrolysis behaviour of coal[J]. Journal of Analytical & Applied Pyrolysis, 2004, 71(2):747-763.
    [30] JIA L, FAN B G, HUO R P, et al. Study on quenching hydration reaction kinetics and desulfurization characteristics of magnesium slag[J]. Journal of Cleaner Production, 2018, 190(20):12-23.
    [31] FAN B G, JIA L, LI B, et al. Study on desulfurization performances of magnesium slag with different hydration modification[J]. Journal of Material Cycles and Waste Management, 2018, 20(3):1771-1780.
    [32] SOLUM M S, PUGMIRE R J, JAGTOYEN M, et al. Evolution of carbon structure in chemically activated wood[J]. Carbon, 1995, 33(9):1247-1254.
    [33] SCHWIETERS C D, KUSZEWSKI J J, TJANDRA N, et al. The Xplor-NIH NMR molecular structure determination package[J]. Journal of Magnetic Resonance, 2003, 160(1):65-73.
  • 加载中
计量
  • 文章访问数:  956
  • HTML全文浏览数:  944
  • PDF下载数:  22
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-06-12
  • 刊出日期:  2019-04-15

生物焦微观特性及分子结构研究

  • 1. 太原理工大学, 电气与动力工程学院, 太原, 030024
基金项目:

国家自然科学基金(U1510135,U1510129)资助.

摘要: 本文利用多种表征手段,研究了汞吸附剂核桃壳生物焦的热解特性、孔隙结构与官能团等微观特性,并基于所获得的化学结构利用ChemBioOffice构建了生物焦的分子结构单体模型.结果表明,生物质的热解过程分为三个阶段,所形成的生物焦孔隙发达,并含有丰富的表面官能团.生物焦的大分子结构中芳香碳是主要组成部分,而脂肪碳则起到联结芳香结构单元的作用.而且生物焦是一种短程有序的非晶态物质,结构中存在一定数量的石墨微晶结构.基于表征结果,所构建的分子模型以芳香结构为主,并含有1个甲基、4个羟基以及8个羰基,分子式为C55H37NO14,Mr=935.同时对模型进行了验证.另外,基于分子力学,在UFF、Dreiding和MM2,3种力场下对三维模型进行了结构优化,其中UFF力场优化后的三维结构的总势能最大,而MM2力场势能最小.利用量子化学半经验PM6方法对3种优化后构象的生成热进行了研究,其中Dreiding力场下优化的结构更稳定.

English Abstract

参考文献 (33)

目录

/

返回文章
返回