平板光极技术的基本原理及其在环境中的应用

胡璇, 韩超, 方文, 刘兆东, 李渊, 罗军. 平板光极技术的基本原理及其在环境中的应用[J]. 环境化学, 2019, 38(4): 861-875. doi: 10.7524/j.issn.0254-6108.2018060101
引用本文: 胡璇, 韩超, 方文, 刘兆东, 李渊, 罗军. 平板光极技术的基本原理及其在环境中的应用[J]. 环境化学, 2019, 38(4): 861-875. doi: 10.7524/j.issn.0254-6108.2018060101
HU Xuan, HAN Chao, FANG Wen, LIU Zhaodong, LI Yuan, LUO Jun. Principles and environmental applications of planar optode technique[J]. Environmental Chemistry, 2019, 38(4): 861-875. doi: 10.7524/j.issn.0254-6108.2018060101
Citation: HU Xuan, HAN Chao, FANG Wen, LIU Zhaodong, LI Yuan, LUO Jun. Principles and environmental applications of planar optode technique[J]. Environmental Chemistry, 2019, 38(4): 861-875. doi: 10.7524/j.issn.0254-6108.2018060101

平板光极技术的基本原理及其在环境中的应用

  • 基金项目:

    国家自然科学基金(41771271)资助.

Principles and environmental applications of planar optode technique

  • Fund Project: Supported by the National Natural Science Foundation of China (41771271).
  • 摘要: 平板光极具有原位、实时、高分辨及多时空尺度定量观测等优点,在生物医学、海洋科学、环境科学及植物营养学等领域具有广泛的应用前景.本文详细综述平板光极技术的基本原理、近二十年荧光染料的开发、成像手段的发展历程,并简要回顾了平板光极技术在环境科学研究中的应用.系统概述了当前平板光极技术遇到的一些挑战,对其未来的发展趋势提出了展望.
  • 加载中
  • [1] GLUD R N,RAMSING B N, GUNDERSEN K J, et al. Planar optrodes:a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities[J]. Marine Ecology Progress, 1996, 140(1-3):217-226.
    [2] TAN S S S, HAUSER P C, WANG K, et al. Reversible optical sensing membrane for the determination of chloride in serum[J]. Analytica Chimica Acta, 1991, 255(1):35-44.
    [3] HUBER C, WERNER T, KRAUSE C, et al. Overcoming the pH dependency of optical sensors:A pH-independent chloride sensor based on co-extraction[J]. Analytica Chimica Acta, 1999, 398(2):137-143.
    [4] OGURI K, KITAZATO H, GLUD R N. Platinum octaetylporphyrin based planar optodes combined with an UV-LED excitation light source:An ideal tool for high-resolution O2, imaging in O2, depleted environments[J]. Marine Chemistry, 2006, 100(1-2):95-107.
    [5] LOUISE A, BO E, RONNIEN G, et al. Soil heterogeneity effects on O2 distribution and CH4 emissions from wetlands:In situ and mesocosm studies with planar O2 optodes and membrane inlet mass spectrometry[J]. Soil Biology & Biochemistry, 2010, 42(12):2254-2265.
    [6] SONG D H, KIM H D, KIM K C. Measurement of dissolved oxygen concentration field in a microchannel using PtOEP/PS film[M]. New York:Springer-Verlag, Inc. 2011.
    [7] KERMIS H R, KOSTOV Y, HARMS P, et al. Dual excitation ratiometric fluorescent pH sensor for noninvasive bioprocess monitoring:development and application[J]. Biotechnology Progress, 2002, 18(5):1047-1053.
    [8] BLOSSFELD S, GANSERT D. A novel non-invasive optical method for quantitative visualization of pH dynamics in the rhizosphere of plants[J]. Plant Cell & Environment, 2007, 30(2):176-186.
    [9] BLOSSFELD S, PERRIGUEY J, STERCKEMAN T, et al. Rhizosphere pH dynamics in trace-metal-contaminated soils, monitored with planar pH optodes[J]. Plant & Soil, 2010, 330(1-2):173-184.
    [10] MILLS A, CHANG Q, MCMURRAY N. Equilibrium studies on colorimetric plastic film sensors for carbon dioxide[J]. Analytical Chemistry, 1992, 64(13):1383-1389.
    [11] STRÖMBERG N, HULTH S. Assessing an imaging ammonium sensor using time correlated pixel-by-pixel calibration[J]. Analytica Chimica Acta, 2005, 550(1-2):61-68.
    [12] CAO Z, ZHU Q, ALLER R C, et al. A fluorosensor for two-dimensional measurements of extracellular enzyme activity in marine sediments[J]. Marine Chemistry, 2010, 123(1):23-31.
    [13] SCHÄFERLING M, WU M, WOLFBEIS O S. Time-resolved fluorescent imaging of glucose[J]. Journal of Fluorescence, 2004, 14(5):561-568.
    [14] KLEIN C, ENGLER R H, HENNE U, et al. Application of pressure-sensitive paint for determination of the pressure field and calculation of the forces and moments of models in a wind tunnel[J]. Experiments in Fluids, 2005, 39(2):475-483.
    [15] YOUSHIMI I, YASUHIRO E, AKIRA N, et al. Optimization of temperature-sensitive paint formulation for large-scale cryogenic wind tunnels[C]. International Congress on Instrumentation in Aerospace Simulation Facilities. IEEE, 2003:70-76.
    [16] RAMSING J K G N B, KLIMANT I. Planar optrodes:a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities[J]. Marine Ecology Progress, 1996, 140(1-3):217-226.
    [17] BEHRENS J W, STAHL H J, STEFFENSEN J F, et al. Oxygen dynamics around buried lesser sandeels Ammodytes tobianus (Linnaeus 1785):mode of ventilation and oxygen requirements[J]. Journal of Experimental Biology, 2007, 210(6):1006-1014.
    [18] FAN Y, ZHU Q, ALLER R C, et al. An in situ multispectral imaging system for planar optodes in sediments:examples of high-resolution seasonal patterns of pH[J]. Aquatic Geochemistry, 2011, 17(4-5):457-471.
    [19] FISCHER J P, WENZHÖFER F. A novel planar optode setup for concurrent oxygen and light field imaging:Application to a benthic phototrophic community[J]. Limnology & Oceanography Methods, 2010, 8(1):254-268.
    [20] LARSEN M, BORISOV S M, GRUNWALD B, et al. A simple and inexpensive high resolution color ratiometric planar optode imaging approach:Application to oxygen and pH sensing[J]. Limnology & Oceanography Methods, 2011, 9(9):348-360.
    [21] HULTH S. A pH plate fluorosensor (optode) for early diagenetic studies of marine sediments[J]. Limnology & Oceanography, 2002, 47(1):212-220.
    [22] ZHU Q Z, AND R C A, FAN Y. High-performance planar ph fluorosensor for two-dimensional ph measurements in marine sediment and water[J]. Environmental Science & Technology, 2005, 39(22):8906-8911.
    [23] HAKONEN A, HULTH S, DUFOUR S. Analytical performance during ratiometric long-term imaging of pH in bioturbated sediments[J]. Talanta, 2010, 81(4-5):1393-1401.
    [24] SCHRÖDER C R, POLERECKY L, KLIMANT I. Time-resolved pH/pO2 mapping with luminescent hybrid sensors[J]. Analytical Chemistry, 2007, 79(1):60-70.
    [25] SCHRÖDER C R, WEIDGANS B M, KLIMANT I. pH fluorosensors for use in marine systems[J]. Analyst, 2005, 130(6):907-916.
    [26] HAKONEN A, HULTH S. A high-performance fluorosensor for pH measurements between 6 and 9[J]. Talanta, 2010, 80(5):1964-1969.
    [27] ZHU Q, ALLER R C, FAN Y. A new ratiometric, planar fluorosensor for measuring high resolution, two-dimensional pCO2, distributions in marine sediments[J]. Marine Chemistry, 2006, 101(1-2):40-53.
    [28] STRÖMBERG N, HULTH S. A fluorescence ratiometric detection scheme for ammonium ions based on the solvent sensitive dye MC 540[J]. Sensors & Actuators B Chemical, 2003, 90(1):308-318.
    [29] ZHU Q, ALLER R C. Planar fluorescence sensors for two-dimensional measurements of H2S distributions and dynamics in sedimentary deposits[J]. Marine Chemistry, 2013, 157(12):49-58.
    [30] KAUTSKY H. Quenching of Luminescence by Oxygen[J]. Transactions Faraday Society, 1939, 35(1):216-219.
    [31] JONES P F. On the use of phosphorescence quenching for determining permeabilities of polymeric films to gases[J]. Journal of Polymer Science Part B Polymer Letters, 1968, 6(7):487-491.
    [32] POLLACK M, PRINGSHEIM P, TERWOORD D. A method for determining small quantities of oxygen[J]. Journal of Chemical Physics, 1944, 12(7):295-299.
    [33] SHAW G. Quenching by oxygen diffusion of phosphorescence emission of aromatic molecules in polymethyl methacrylate[J]. Transactions of the Faraday Society, 1967, 63:2181-2189.
    [34] XU W, RD M D R, LANGSDORF B, et al. Oxygen sensors based on luminescence quenching:Interactions of metal complexes with the polymer supports[J]. Analytical Chemistry, 1994, 66(23):4133-4141.
    [35] BASU B J, ANANDAN C, RAJAM K S. Study of the mechanism of degradation of pyrene-based pressure sensitive paints[J]. Sensors & Actuators B Chemical, 2003, 94(3):257-266.
    [36] MINGOARRANZ F J, MORENO-BONDI M C, GARCÍA-FRESNADILLO D, et al. Oxygen-sensitive layers for optical fibre devices[J]. Microchimica Acta, 1995, 121(1-4):107-118.
    [37] ALFORD P C, COOK M J, LEWIS A P, et al. ChemInform Abstract:Luminescent metal complexes. part 5. luminescence properties of ring-substituted 1,10-phenanthroline tris-complexes of ruthenium(Ⅱ)[J]. 1985, 16(38):705-709.
    [38] COOK M J, LEWIS A P, MCAULIFFE G S G, et al. Cheminform abstract:Luminescent metal complexes. part 1. Tris-chelates of substituted 2,2'-bipyridyls with ruthenium(Ⅱ) as dyes for luminescent solar collectors[J]. Cheminform, 1984, 15(47):1293-1301.
    [39] XU W Y, KNEAS K A, DEMAS J N, et al. Oxygen sensors based on luminescence quenching of metal complexes:Osmium complexes suitable for laser diode excitation[J]. Analytical Chemistry, 1996, 68(15):2605-2609.
    [40] DELYLE E, MARTIN G. Porphyrin:XVⅢ. Luminescence of (Co), (Ni), Pd, Pt complexes[J]. Journal of Molecular Spectroscopy, 1970, 35(3):359-375.
    [41] PAPKOVSKY D B. New oxygen sensors and their application to biosensing[J]. Sensors & Actuators B Chemical, 1995, 29(1):213-218.
    [42] BORISOV S M, KLIMANT I. Ultrabright oxygen optodes based on cyclometalated iridium(Ⅲ) coumarin complexes[J]. Analytical Chemistry, 2007, 79(19):7501-7509.
    [43] WOLFBEIS O S. Acid-base titrations using fluorescent indicators and fiber optical light guides[J]. Fresenius Zeitschrift Für Analytische Chemie, 1985, 320(3):271-273.
    [44] Wolfbeis O S. Fluorimetric Analysis, 1. A Study on Fluorescent Indicators for Measuring Near Neutral ("physiological") pH-values[J]. Fresenius Z.anal.chem, 1983(314):119-124.
    [45] ZHU Q, ALLER R C, FAN Y. Two-dimensional pH distributions and dynamics in bioturbated marine sediments[J]. Geochimica Et Cosmochimica Acta, 2006, 70(19):4933-4949.
    [46] SCHROEDER C R, NEURAUTER G, KLIMANT I. Luminescent dual sensor for time-resolved imaging of pCO2, and pO2, in aquatic systems[J]. Microchimica Acta, 2007, 158(3-4):205-218.
    [47] HULTH S. A pH plate fluorosensor (optode) for early diagenetic studies of marine sediments[J]. Limnology & Oceanography, 2002, 47(1):212-220.
    [48] MOHR G J, WERNER T, WOLFBEIS O S. Application of a novel lipophilized fluorescent dye in an optical nitrate sensor[J]. Journal of Fluorescence, 1995, 5(2):135-138.
    [49] SCHRÖO1DER C R, POLERECKY L, KLIMANT I. Time-resolved pH/pO2 Mapping with Luminescent Hybrid Sensors[J]. Analytical Chemistry, 2007, 79(1):60-70.
    [50] STAHL H, GLUD A, SCHRÖDER C R, et al. Time-resolved pH imaging in marine sediments with a luminescent planar optode[J]. Limnology & Oceanography Methods, 2006, 4(4):336-345.
    [51] RUDOLPH-MOHR N, MORADI B A, NAGL S, et al. Spatio-temporal mapping of local soil pH changes induced by roots of lupin and soft-rush[J]. Plant & Soil, 2013, 369(1-2):669-680.
    [52] AIGNER D, UNGERBÖCK B, MAYR T, et al. Fluorescent materials for pH sensing and imaging based on novel 1,4-diketopyrrolo-[3,4-c] pyrrole dyes Electronic supplementary information (ESI) available:NMR and MS spectra, further sensor characteristics and sensor long-time performance[J]. J Mater Chem C Mater Opt Electron Devices, 2013, 1(36):5685-5693..
    [53] HAN C, YAO L, XU D, et al. High-resolution imaging of ph in alkaline sediments and water based on a new rapid response fluorescent planar optode[J]. Sci Rep, 2016, 6:26417:1-8.
    [54] ANDREW M, QING CH. Fluorescence plastic thin-film sensor for carbon dioxide[J]. Analyst, 1993, 118(7):839-843.
    [55] JENSEN M A, RECHNITZ G A. Response time characteristics of the pCO2 electrode[J]. Analytical Chemistry, 1979, 51(12):1972-1977.
    [56] WHALEN W J, RILEY J, NAIR P. A microelectrode for measuring intracellular pH[J]. Advances in Experimental Medicine & Biology, 1967, 180(5):881-886.
    [57] STRÖMBERG N, HAKONEN A. Plasmophore sensitized imaging of ammonia release from biological tissues using optodes[J]. Analytica Chimica Acta, 2011, 704(1-2):139-145.
    [58] HUBER C, KLIMANT I, KRAUSE C, et al. Nitrate-selective optical sensor applying a lipophilic fluorescent potential-sensitive dye[J]. Analytica Chimica Acta, 2001, 449(1-2):81-93.
    [59] CHOI M M F. Fluorimetric optode membrane for sulfide detection[J]. Analyst, 1998, 123(7):1631-1634.
    [60] REIJA B, ALSOUFI W, MERCEDES NOVO A, et al. Specific interactions in the inclusion complexes of pyronines Y and B with β-cyclodextrin[J]. Journal of Physical Chemistry B, 2005, 109(4):1364-1370.
    [61] GEDDES C D. REVIEW ARTICLE:, Optical halide sensing using fluorescence quenching:Theory, simulations and applications:A review[J]. Measurement Science & Technology, 2001, 12(9):R53-R88.
    [62] HUBER C, KRAUSE C, WERNER T, et al. Serum chloride optical sensors based on dynamic quenching of the fluorescence of photo-immobilized Lucigenin[J]. Microchimica Acta, 2003, 142(4):245-253.
    [63] STOY V A. New type of hydrogel for controlled drug delivery[J]. Journal of Biomaterials Applications, 1989, 3(4):552-604.
    [64] ZHU Q, ALLER R C. Two-dimensional dissolved ferrous iron distributions in marine sediments as revealed by a novel planar optical sensor[J]. Marine Chemistry, 2012, s 136-137(2):14-23.
    [65] YIN WENTING, CUI HAO, YANG ZHENG, et al. Facile synthesis and characterization of rhodamine-based colorimetric and "off-on" fluorescent chemosensor for Fe3+[J]. Sensors & Actuators B Chemical, 2011, 157(2):675-680.
    [66] ZHANG X B, PENG J, HE C L, et al. A highly selective fluorescent sensor for Cu2+, based on 2-(2'-hydroxyphenyl)benzoxazole in a poly(vinyl chloride) matrix[J]. Analytica Chimica Acta, 2006, 567(2):189-195.
    [67] ZHAO X H, MA Q J, ZHANG X B, et al. A highly selective fluorescent sensor for Cu2+ based on a covalently immobilized naphthalimide derivative[J]. Analytical Sciences, 2010, 26(5):585-590.
    [68] DU P, LIPPARD S J. A Highly selective turn-on colorimetric, red fluorescent sensor for detecting mobile zinc in living cells[J]. Inorganic Chemistry, 2010, 49(23):10753-10755.
    [69] CHAN W H, YANG R H, WANG K M. Development of a mercury ion-selective optical sensor based on fluorescence quenching of 5,10,15,20-tetraphenylporphyrin[J]. Analytica Chimica Acta, 2001, 444(2):261-269.
    [70] SONG A, PARUS S, KOPELMAN R. High-performance fiber-optic pH microsensors for practical physiological measurements using a dual-emission sensitive dye[J]. Analytical Chemistry, 1997, 69(5):863-867.
    [71] DELIN S, STRÖMBERG N. Imaging-optode measurements of ammonium distribution in soil after different manure amendments[J]. European Journal of Soil Science, 2011, 62(2):295-304.
    [72] MEIER R J, SCHREML S, WANG X D, et al. Simultaneous photographing of oxygen and ph in vivo using sensor films[J]. Angewandte Chemie International Edition, 2011, 123(46):11085-11088.
    [73] HOLST G, KOHLS O, KLIMANT I, et al. A modular luminescence lifetime imaging system for mapping oxygen distribution in biological samples[J]. Sensors & Actuators B Chemical, 1998, 51(1-3):163-170.
    [74] WOODS R J, SCYPINSKI S, LOVE L J, et al. Transient digitizer for the determination of microsecond luminescence lifetimes[J]. Analytical Chemistry, 1984, 56(8):1395-1400.
    [75] LIEBSCH G, KLIMANT I, CHRISTIAN KRAUSE A, et al. Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing[J]. Analytical Chemistry, 2001, 73(17):4354-4363.
    [76] GLUD R N, SANTEGOEDS C M, BEER D D, et al. Oxygen dynamics at the base of a biofilm studied with planar optodes[J]. Aquatic Microbial Ecology, 1998, 14(3):223-233.
    [77] ZHU Q, ALLER R C. A rapid response, planar fluorosensor for measuring two-dimensional pCO2, distributions and dynamics in marine sediments[J]. Limnology & Oceanography Methods, 2010, 8(7):326-336.
    [78] STAAL M, PREST E I, Vrouwenvelder J S, et al. A simple optode based method for imaging O2 distribution and dynamics in tap water biofilms[J]. Water Research, 2011, 45(16):5027-5037.
    [79] POLERECKY L, VOLKENBORN N, STIEF P. High temporal resolution oxygen imaging in bioirrigated sediments[J]. Environmental Science & Technology, 2006, 40(18):5763-5769.
    [80] SCHRÖDER C R. Luminescent planar single and dual optodes for time-resolved imaging of pH, pCO2 and pO2 in marine systems[M]. Germany, Regensbury University,Inc.2006.
    [81] NIKOLA L, PETER M, ROBERT J M, et al. Dynamics of oxygen and carbon dioxide in rhizospheres of lobelia dortmanna-a planar optode study of belowground gas exchange between plants and sediment[J]. New Phytologist, 2018, 218(1):131-141.
    [82] WILLIAMS P N, SANTNER J, LARSEN M, et al. Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice[J]. Environmental Science & Technology, 2014, 48(15):8498-8506.
    [83] HOEFER C, SANTNER J, BORISOV S M, et al. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer[J]. Analytica Chimica Acta, 2016, 950(15):88-97.
    [84] HAN C, REN J, WANG Z, et al. A novel hybrid sensor for combined imaging of dissolved oxygen and labile phosphorus flux in sediment and water[J]. Water Research, 2016, 108(1);179-188.
    [85] XU W, LU S, CHEN Y, et al. Simultaneous color sensing of O2, and pH using a smartphone[J]. Sensors & Actuators B Chemical, 2015, 220:326-330.
    [86] BORISOV S M, ROMAN S, INGO K. A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature[J]. Analytical & Bioanalytical Chemistry, 2011, 400(8):2463-2474.
    [87] STICH M I J, FISCHER L H, WOLFBEIS O S. Multiple fluorescent chemical sensing and imaging[J]. Chemical Society Reviews, 2010, 39(8):3102-3114.
    [88] KOREN K, BRODERSEN K E, JAKOBSEN S L, et al. Optical Sensor nanoparticles in artificial sediments-a new tool to visualize O2 dynamics around the rhizome and roots of seagrasses[J]. Environmental Science & Technology, 2015, 49(4):2286-2292.
    [89] FISCHER J P, KOOP-JAKOBSEN K. The multi fiber optode (MuFO):A novel system for simultaneous analysis of multiple fiber optic oxygen sensors[J]. Sensors & Actuators B Chemical, 2012, 168(12):354-359.
    [90] KOOP-JAKOBSEN K K, FISCHER J, WENZHÖFER F. Survey of sediment oxygenation in rhizospheres of the saltmarsh grass-Spartina anglica[J]. Science of the Total Environment, 2017, 589:191-199.
  • 加载中
计量
  • 文章访问数:  1423
  • HTML全文浏览数:  1401
  • PDF下载数:  36
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-06-01
  • 刊出日期:  2019-04-15

平板光极技术的基本原理及其在环境中的应用

  • 1.  污染控制与资源化研究国家重点实验室, 南京大学环境学院, 南京, 210023;
  • 2.  湖泊科学与环境国家重点实验室, 中国科学院南京地理与湖泊研究所, 南京, 210008
基金项目:

国家自然科学基金(41771271)资助.

摘要: 平板光极具有原位、实时、高分辨及多时空尺度定量观测等优点,在生物医学、海洋科学、环境科学及植物营养学等领域具有广泛的应用前景.本文详细综述平板光极技术的基本原理、近二十年荧光染料的开发、成像手段的发展历程,并简要回顾了平板光极技术在环境科学研究中的应用.系统概述了当前平板光极技术遇到的一些挑战,对其未来的发展趋势提出了展望.

English Abstract

参考文献 (90)

目录

/

返回文章
返回