纳米金属氧化物模拟天然酶催化水体中酚类污染物转化的研究进展

孙凯, 谢道月, 陈文君, 刘琦, 李舜尧, 蒋瑾, 司友斌. 纳米金属氧化物模拟天然酶催化水体中酚类污染物转化的研究进展[J]. 环境化学, 2019, 38(4): 911-921. doi: 10.7524/j.issn.0254-6108.2018061501
引用本文: 孙凯, 谢道月, 陈文君, 刘琦, 李舜尧, 蒋瑾, 司友斌. 纳米金属氧化物模拟天然酶催化水体中酚类污染物转化的研究进展[J]. 环境化学, 2019, 38(4): 911-921. doi: 10.7524/j.issn.0254-6108.2018061501
SUN Kai, XIE Daoyue, CHEN Wenjun, LIU Qi, LI Shunyao, JIANG Jin, SI Youbin. Catalytic transformation of phenolic contaminants in water by utilizing nano-metallic oxides as natural enzyme mimics[J]. Environmental Chemistry, 2019, 38(4): 911-921. doi: 10.7524/j.issn.0254-6108.2018061501
Citation: SUN Kai, XIE Daoyue, CHEN Wenjun, LIU Qi, LI Shunyao, JIANG Jin, SI Youbin. Catalytic transformation of phenolic contaminants in water by utilizing nano-metallic oxides as natural enzyme mimics[J]. Environmental Chemistry, 2019, 38(4): 911-921. doi: 10.7524/j.issn.0254-6108.2018061501

纳米金属氧化物模拟天然酶催化水体中酚类污染物转化的研究进展

  • 基金项目:

    国家自然科学基金(41471405),安徽省自然科学基金(1808085QD104)和安徽农业大学稳定和引进人才项目(yj2018-31)资助.

Catalytic transformation of phenolic contaminants in water by utilizing nano-metallic oxides as natural enzyme mimics

  • Fund Project: Supported by the National Natural Science Foundation of China (41471405),the Natural Science Foundation of Anhui Province (1808085QD104) and the Stabilized and introduced talent Foundation of Anhui Agricultural University (yj2018-31).
  • 摘要: 天然酶作为一种绿色催化剂,能够介导水体中酚类污染物形成酚氧自由基中间体,随后这些活性中间体通过共价偶联机制生成大分子聚合产物.纳米金属氧化物(N-MOs)兼具纳米材料和天然酶"双重身份",有望克服天然酶稳定性差、难回收、易失活和价格昂贵等缺点,高效地催化氧化水体中酚类污染物的转化.本文概述了两种天然酶(过氧化物酶和酚氧化酶)的基本性能及其催化偶联酚类污染物转化的作用机理,系统地探讨了N-MOs的纳米特性及其模拟天然酶催化氧化底物的显色反应、作用效能和影响因素,并阐释了N-MOs作为纳米酶催化氧化酚类污染物转化的最新研究进展及其潜在的应用价值,旨在为拓展和开发新型、有效地纳米酶在环境中的应用提供新的理论基础和技术指导.
  • 加载中
  • [1] 谢晟瑜, 张佳丽, 沈昊宇, 等. 氯酚类污染物的性质, 危害及其检测方法研究进展[J]. 分析试验室, 2017, 36(11):1351-1355.

    XIE S, ZHANG J, SHEN H, et al. Research progress on the properties, harmfulness, and the determination methods of chlorophenols[J]. Chinese Journal of Analysis Laboratory, 2017, 36(11):1351-1355 (in Chinese).

    [2] AHMED S, RASUL M G, BROWN R, et al. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater:A short review[J]. Journal of Environmental Management, 2011, 92(3):311-330.
    [3] 龚睿, 孙凯, 谢道月. 真菌漆酶在绿色化学中的研究进展[J]. 生物技术通报, 2018, 34(3):1-6.

    GONG R, SUN K, XIE D. Applications of fungal laccase in green chemistry[J]. Biotechnology Bulletin, 2018, 34(3):1-6 (in Chinese).

    [4] GARCIA H A, HOFFMAN C M, KINNEY K A, et al. Laccase-catalyzed oxidation of oxybenzone in municipal wastewater primary effluent[J]. Water Research, 2011, 45(5):1921-1932.
    [5] SUN K, LUO Q, GAO Y, et al. Laccase-catalyzed reactions of 17β-estradiol in the presence of humic acid:Resolved by high-resolution mass spectrometry in combination with 13C labeling[J]. Chemosphere, 2016, 145:394-401.
    [6] 张彤, 赵庆祥, 黄慧, 等. 辣根过氧化物酶处理酚和氯酚的催化特性研究[J]. 环境科学, 1998, 19(1):25-29.

    ZHANG T, ZHAO Q, HUANG H, et al. Kinetic study on the removal of toxic phenol and chlorophenol from waste water by horseradish peroxidase[J]. Environmental Science, 1998, 19(1):25-29 (in Chinese).

    [7]
    [8] MAI C, SCHORMANN W, MILSTEIN O, et al. Enhanced stability of laccase in the presence of phenolic compounds[J]. Applied Microbiology and Biotechnology, 2000, 54(4):510-514.
    [9] SHELDON R A, VAN PELT S. Enzyme immobilisation in biocatalysis:Why, what and how[J]. Chemical Society Reviews, 2013, 42(15):6223-6235.
    [10] 罗成, 李艳, 龙建纲. 纳米材料模拟酶的应用研究进展[J]. 中国科学:化学, 2015, 45(10):1026-1041.

    LUO C, LI Y, LONG J. Recent advances in applications of nanoparticles as enzyme mimetics[J]. Scientia Sinica Chimica, 2015, 45(10):1026-1041 (in Chinese).

    [11] GAO L, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology, 2007, 2(9):577-583.
    [12] ASATI A, SANTRA S, KAITTANIS C, et al. Oxidase-like activity of polymer-coated cerium oxide nanoparticles[J]. Angewandte Chemie, 2009, 121(13):2344-2348.
    [13] WAN Y, QI P, ZHANG D, et al. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay[J]. Biosensors and Bioelectronics, 2012, 33(1):69-74.
    [14] HE Y, WANG Z, LONG D. Direct visual detection of MnO2 nanosheets within seconds[J]. Analytical and Bioanalytical Chemistry, 2016, 408(4):1231-1236.
    [15] SAPUTRA E, MUHAMMAD S, SUN H, et al. A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions[J]. Journal of Colloid and Interface Science, 2013, 407:467-473.
    [16] 李海涛, 李玉平, 曹宏斌,等. 过氧化物酶-辅酶NADH催化O2/H2O2产生羟基自由基研究及其氯苯处理初探[J]. 光谱学与光谱分析, 2010, 30(11):3119-3123.

    LI H, LI Y, CAO H, et al. The production of hydroxyl radical in HRP-NADH-H2O2/O2 systems and its application in chlorobenzene removal[J]. Spectroscopy and Spectral Analysis, 2010, 30(11):3119-3123 (in Chinese).

    [17] RAO M A, SCELZA R, ACEVEDO F, et al. Enzymes as useful tools for environmental purposes[J]. Chemosphere, 2014, 107:145-162.
    [18] MUKHERJEE S, BASAK B, BHUNIA B, et al. Potential use of polyphenol oxidases (PPO) in the bioremediation of phenolic contaminants containing industrial wastewater[J]. Reviews in Environmental Science & Bio/Technology, 2013, 12(1):61-73.
    [19] BOLLAG J M. Enzyme catalyzing oxidative into soil humus[J]. Metal Ions in Biological Systems, 1992, 28:205-217.
    [20] DEC J, BOLLAG J M. Phenoloxidase-mediated interactions of phenols and anilines with humic materials[J]. Journal of Environmental Quality, 2000, 29(30):665-676.
    [21] 冯义平, 毛亮, 董仕鹏, 等. 过氧化物酶催化去除水体中酚类内分泌干扰物的研究进展[J]. 环境化学, 2013, 32(7):1218-1225.

    FENG Y, MAO L, DONG S, et al. Peroxidase-catalyzed removal of phenolic endocrine disrupting chemicals from water[J]. Environmental Chemistry, 2013, 32(7):1218-1225 (in Chinese).

    [22] VEITCH N C. Horseradish peroxidase:A modern view of a classic enzyme[J]. Phytochemistry, 2004, 65(3):249-259.
    [23]
    [24] 王晓明, 刘小勇. 辣根过氧化物酶生物降解五氯酚[J]. 化学与生物工程, 2008, 25(2):48-50.

    WANG X, LIU X. Biodegradation of pentachlorophenol by horseradish peroxidase[J]. Chemistry & Bioengineering, 2008, 25(2):48-50 (in Chinese).

    [25] LI J, PENG J, ZHANG Y, et al. Removal of triclosan via peroxidases-mediated reactions in water:Reaction kinetics, products and detoxification[J]. Journal of Hazardous Materials, 2016, 310:152-160.
    [26] 杨梅, 吴永贵, 熊键. 改性蒙脱土固定化辣根过氧化物酶对2,4,6-三氯苯酚的催化去除及其影响因素研究[J]. 环境科学学报, 2014, 34(6):1414-1420.

    YANG M, WU Y, XIONG J. Removal and influences of 2,4,6-trichlorophenol catalyzed by horseradish peroxidase immobilized on modified montmorillonite[J]. Acta Scientiae Circumstantiae, 2014, 34(6):1414-1420 (in Chinese).

    [27] DUARTE-VáZQUEZ M A, ORTEGA-TOVAR M A, GARCíA-ALMENDAREZ B E, et al. Removal of aqueous phenolic compounds from a model system by oxidative polymerization with turnip (Brassica napus L var purple top white globe) peroxidase[J]. Journal of Chemical Technology and Biotechnology, 2003, 78(1):42-47.
    [28] LI J, ZHANG Y, HUANG Q, et al. Degradation of organic pollutants mediated by extracellular peroxidase in simulated sunlit humic waters:A case study with 17β-estradiol[J]. Journal of Hazardous Materials, 2017, 331:123-131.
    [29] FOROOTANFAR H, MOVAHEDNIA M M, YAGHMAEI S, et al. Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase[J]. Journal of Hazardous Materials, 2012, 209:199-203.
    [30] BAO W, PENG R, ZHANG Z, et al. Expression, characterization and 2,4,6-trichlorophenol degradation of laccase from Monilinia fructigena[J]. Molecular Biology Reports, 2012, 39(4):3871-3877.
    [31] KIM Y J, NICELL J A. Laccase-catalysed oxidation of aqueous triclosan[J]. Journal of Chemical Technology and Biotechnology, 2006, 81(8):1344-1352.
    [32] ARCA-RAMOS A, EIBES G, FEIJOO G, et al. Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents[J]. Applied Microbiology and Biotechnology, 2015, 99(21):9299-9308.
    [33] CHOINOWSKI T, BLODIG W, WINTERHALTER K H, et al. The crystal structure of lignin peroxidase at 1.70 Ǻ resolution reveals a hydroxy group on the Cβ, of tryptophan 171:A novel radical site formed during the redox cycle[J]. Journal of Molecular Biology, 1999, 286(3):809-827.
    [34] COLOSI L M, HUANG Q, WEBER W J. Quantitative structure-activity relationship based quantification of the impacts of enzyme-substrate binding on rates of peroxidase-mediated reactions of estrogenic phenolic chemicals[J]. Journal of the American Chemical Society, 2006, 128(12):4041-4047.
    [35] AMMANN E M, GASSER C A, HOMMES G, et al. Immobilization of defined laccase combinations for enhanced oxidation of phenolic contaminants[J]. Applied Microbiology & Biotechnology, 2014, 98(3):1397-1406.
    [36] 张敏, 肖亚中, 龚为民. 真菌漆酶的结构与功能[J]. 生物学杂志, 2003, 20(5):6-8.

    ZHANG M, XIAO Y, GONG W. Advances on the structure and function of fungal laccase[J]. Journal of Biology, 2003, 20(5):6-8 (in Chinese).

    [37] RIVA S. Laccases:Blue enzymes for green chemistry[J]. Trends in Biotechnology, 2006, 24(5):219-226.
    [38] 孙凯, 李舜尧. 漆酶催化氧化水溶液中三氯生转化的作用理[J]. 中国环境科学, 2017, 37(8):2947-2954.

    SUN K, LI S. Laccase-mediated transformation mechanism of triclosan in aqueous solution[J]. China Environmental Science, 2017, 37(8):2947-2954 (in Chinese).

    [39] DU P, ZHAO H, LIU C, et al. Transformation and products of captopril with humic constituents duringlaccase-catalyzed oxidation:Role of reactive intermediates[J]. Water Research, 2016, 106:488-495.
    [40] FENG Y, COLOSI L M, GAO S, et al. Transformation and removal of tetrabromobisphenol A from water in the presence of natural organic matter via laccase-catalyzed reactions:Reaction rates, products, and pathways[J]. Environmental Science & Technology, 2013, 47(2):1001-1008.
    [41] GULKOWSKA A, SANDER M, HOLLENDER J, et al. Covalent binding of sulfamethazine to natural and synthetic humic acids:Assessing laccase catalysis and covalent bond stability[J]. Environmental Science & Technology, 2013, 47(13):6916-6924.
    [42] GU L, HUANG B, XU Z, et al. Dissolved organic matter as a terminal electron acceptor in the microbial oxidation of steroid estrogen[J]. Environmental Pollution, 2016, 218:26-33.
    [43] WEI H, WANG E. Nanomaterials with enzyme-like characteristics (nanozymes):Next-generation artificial enzymes[J]. Chemical Society Reviews, 2013, 42(14):6060-6093.
    [44] 高利增, 阎锡蕴. 纳米酶的发现与应用[J]. 生物化学与生物物理进展, 2013, 40(10):892-902.

    GAO L, YAN X. Discovery and current application of nanozyme[J]. Progress in Biochemistry and Biophysics, 2013, 40(10):892-902 (in Chinese).

    [45] LIU J, MENG L, FEI Z, et al. MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione[J]. Biosensors and Bioelectronics, 2017, 90:69-74.
    [46] CHEN W, CHEN J, FENG Y B, et al. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose[J]. Analyst, 2012, 137(7):1706-1712.
    [47] DONG J, SONG L, YIN J J, et al. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay[J]. ACS Applied Materials & Interfaces, 2014, 6(3):1959-1970.
    [48] HUANG L, ZHANG W, CHEN K, et al. Facet-selective response of trigger molecule to CeO2 {1 1 0} for up-regulating oxidase-like activity[J]. Chemical Engineering Journal, 2017, 330:746-752.
    [49] VALLABANI N V S, KARAKOTI A S, SINGH S. ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme:One step detection of blood glucose at physiological pH[J]. Colloids and Surfaces B:Biointerfaces, 2017, 153:52-60.
    [50] BAIG R B N, VARMA R S. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica:Aqueous hydration of nitriles to amides[J]. Chemical Communications, 2012, 48(50):6220-6222.
    [51] LIU S, LU F, XING R, et al. Structural effects of Fe3O4 nanocrystals on peroxidase-like activity[J]. Chemistry-A European Journal, 2011, 17(2):620-625.
    [52] HE W, WU X, LIU J, et al. Design of AgM bimetallic alloy nanostructures (M=Au, Pd, Pt) with tunable morphology and peroxidase-like activity[J]. Chemistry of Materials, 2010, 22(9):2988-2994.
    [53] YU F Q, HUANG Y Z, COLE A J, et al. The artificial peroxidaseactivity of magnetic iron oxide nanoparticles and its application toglucose detection[J]. Biomaterials, 2009, 30(27):4716-4722.
    [54] MU J, WANG Y, ZHAO M, et al. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles[J]. Chemical Communications, 2012, 48(19):2540-2542.
    [55] ZHANG J B, ZHUANG J, GAO L Z, et al. Decomposing phenol by the hidden talent of ferromagnetic nanoparticles[J]. Chemosphere, 2008, 73(9):1524-1528.
    [56] PEREZ J M, ASATI A, NATH S, et al. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties[J]. Small, 2008, 4(5):552-556.
    [57] HE L, LU Y, WANG F, et al. Colorimetric sensing of silver ions based on glutathione-mediated MnO2 nanosheets[J]. Sensors and Actuators B:Chemical, 2018, 254:468-474.
    [58] ZHU P, CHEN Y, SHI J. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation[J]. ACS Nano, 2018, 12(4):3780-3795.
    [59] WANG F, DAI H, DENG J, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies:Highly effective catalysts for the removal of toluene[J]. Environmental Science & Technology, 2012, 46(7):4034-4041.
    [60] FANG H, PAN Y, SHAN W, et al. Enhanced nonenzymatic sensing of hydrogen peroxide released from living cells based on Fe3O4/self-reduced graphene nanocomposites[J]. Analytical Methods, 2014, 6(15):6073-6081.
    [61] LIU J, ZHAO Z, SHAO P, et al. Activation of peroxymonosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation[J]. Chemical Engineering Journal, 2015, 262:854-861.
    [62] SUN K, LIANG S, KANG F, et al. Transformation of 17β-estradiol in humic acid solution by ε-MnO2 nanorods as probed by high-resolution mass spectrometry combined with 13C labeling[J]. Environmental Pollution, 2016, 214:211-218.
    [63] HU X, LIU B, DENG Y, et al. Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution[J]. Applied Catalysis B:Environmental, 2011, 107(3-4):274-283.
    [64] WANG X, LIU J, QU R, et al. The laccase-like reactivity of manganese oxide nanomaterials for pollutant conversion:Rate analysis and cyclic voltammetry[J]. Scientific Reports, 2017, 7(1):7756.
    [65] SUN K, LI S, WAIGI M G, et al. Nano-MnO2-mediated transformation of triclosan with humic molecules present:Kinetics, products, and pathways[J]. Environmental Science and Pollution Research, 2018, 25(15):14416-14425.
    [66] LIU J, ZHAO Z, SHAO P, et al. Activation of peroxymonosulfate with magnetic Fe3O4-MnO2, core-shell nanocomposites for 4-chlorophenol degradation[J]. Chemical Engineering Journal, 2015, 262(9):854-861.
    [67] MAHAMALLIK P, SAHA S, PAL A. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly[J]. Chemical Engineering Journal, 2015, 276:155-165.
    [68] SAPUTRA E, ZHANG H, LIU Q, et al. Egg-shaped core/shell α-Mn2O3@α-MnO2 as heterogeneous catalysts for decomposition of phenolics in aqueous solutions[J]. Chemosphere, 2016, 159:351-358.
    [69] WU G W, HE S B, PENG H P, et al. Citrate-capped platinum nanoparticle as a smart probe for ultrasensitive mercury sensing[J]. Analytical Chemistry, 2014, 86(21):10955-10960.
    [70] ZHUANG J, FAN K, GAO L, et al. Ex vivo detection of iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity[J]. Molecular Pharmaceutics, 2012, 9(7):1983-1989.
    [71] CHANG Q, DENG K, ZHU L, et al. Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst[J]. Microchimica Acta, 2009, 165(3-4):299-305.
  • 加载中
计量
  • 文章访问数:  1241
  • HTML全文浏览数:  1209
  • PDF下载数:  51
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-06-15
  • 刊出日期:  2019-04-15

纳米金属氧化物模拟天然酶催化水体中酚类污染物转化的研究进展

  • 1.  农田生态保育与污染防控安徽省重点实验室, 安徽农业大学资源与环境学院, 合肥, 230036;
  • 2.  南京农业大学资源与环境科学学院, 南京, 210095
基金项目:

国家自然科学基金(41471405),安徽省自然科学基金(1808085QD104)和安徽农业大学稳定和引进人才项目(yj2018-31)资助.

摘要: 天然酶作为一种绿色催化剂,能够介导水体中酚类污染物形成酚氧自由基中间体,随后这些活性中间体通过共价偶联机制生成大分子聚合产物.纳米金属氧化物(N-MOs)兼具纳米材料和天然酶"双重身份",有望克服天然酶稳定性差、难回收、易失活和价格昂贵等缺点,高效地催化氧化水体中酚类污染物的转化.本文概述了两种天然酶(过氧化物酶和酚氧化酶)的基本性能及其催化偶联酚类污染物转化的作用机理,系统地探讨了N-MOs的纳米特性及其模拟天然酶催化氧化底物的显色反应、作用效能和影响因素,并阐释了N-MOs作为纳米酶催化氧化酚类污染物转化的最新研究进展及其潜在的应用价值,旨在为拓展和开发新型、有效地纳米酶在环境中的应用提供新的理论基础和技术指导.

English Abstract

参考文献 (71)

目录

/

返回文章
返回