锆负载量对锆镁改性膨润土吸附水中磷酸盐的影响

何思琪, 张宏华, 林建伟, 詹艳慧, 田弘, 刘鹏茜, 林莹, 俞阳, 吴小龙, 赵钰颖, 王艳. 锆负载量对锆镁改性膨润土吸附水中磷酸盐的影响[J]. 环境化学, 2019, 38(4): 922-934. doi: 10.7524/j.issn.0254-6108.2018053006
引用本文: 何思琪, 张宏华, 林建伟, 詹艳慧, 田弘, 刘鹏茜, 林莹, 俞阳, 吴小龙, 赵钰颖, 王艳. 锆负载量对锆镁改性膨润土吸附水中磷酸盐的影响[J]. 环境化学, 2019, 38(4): 922-934. doi: 10.7524/j.issn.0254-6108.2018053006
HE Siqi, ZHANG Honghua, LIN Jianwei, ZHAN Yanhui, TIAN Hong, LIU Pengxi, LIN Ying, YU Yang, WU Xiaolong, ZHAO Yuying, WANG Yan. Effect of zirconium loading on phosphate adsorption onto zirconium/magnesium-modified bentonite[J]. Environmental Chemistry, 2019, 38(4): 922-934. doi: 10.7524/j.issn.0254-6108.2018053006
Citation: HE Siqi, ZHANG Honghua, LIN Jianwei, ZHAN Yanhui, TIAN Hong, LIU Pengxi, LIN Ying, YU Yang, WU Xiaolong, ZHAO Yuying, WANG Yan. Effect of zirconium loading on phosphate adsorption onto zirconium/magnesium-modified bentonite[J]. Environmental Chemistry, 2019, 38(4): 922-934. doi: 10.7524/j.issn.0254-6108.2018053006

锆负载量对锆镁改性膨润土吸附水中磷酸盐的影响

  • 基金项目:

    国家自然科学基金(51408354,50908142),上海市自然科学基金(15ZR1420700),上海市大学生创新项目和上海海洋大学优秀本科生进实验室项目资助.

Effect of zirconium loading on phosphate adsorption onto zirconium/magnesium-modified bentonite

  • Fund Project: Supported by the National Natural Science Foundation of China (51408354,50908142),the Natural Science Foundation of Shanghai (15ZR1420700),the College Student Innovation Project of Shanghai and the Project of Shanghai Ocean University Outstanding Undergraduate Entering the Laboratory.
  • 摘要: 制备了锆氧化物(ZrO2)含量分别为2.98%、7.81%、13.73%和33.70%的4种锆镁改性膨润土,并考察了锆负载量对锆镁改性膨润土吸附水中磷酸盐的影响.结果表明,较高的吸附剂投加量有利于水中磷酸盐被锆镁改性膨润土所吸附去除.锆镁改性膨润土吸附水中磷酸盐的动力学过程符合准二级动力学模型.锆镁改性膨润土对水中磷酸盐的吸附等温行为可以采用Langmuir、Freundlich和Dubinin-Redushckevich (D-R)等温吸附模型进行描述.增加溶液pH值不会导致锆镁改性膨润土对水中磷酸盐吸附能力的下降.锆镁改性膨润土对水中磷酸盐的吸附能力随其锆含量的增加而增加.但是,从总体上,锆镁改性膨润土中单位质量ZrO2对水中磷酸盐的最大吸附量则随其锆含量的增加而降低.研究结果说明,锆镁改性膨润土适合作为一种吸附剂去除水中的磷酸盐,较高的锆负载量有利于增强锆镁改性膨润土吸附水中磷酸盐的能力,而较低的锆负载量则有利于提高锆镁改性膨润土中单位质量ZrO2对水中磷酸盐的吸附能力.
  • 加载中
  • [1] SMITH V H, TILMAN G D, NEKOLA J C. Eutrophication:Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems[J]. Environmental Pollution, 1999, 100(1-3):179-196.
    [2] LÜRLING M, WAAJEN G, VAN OOSTERHOUT F. Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication[J]. Water Research, 2014, 54:78-88.
    [3] COPETTI D, FINSTERLE K, MARZIALI L, et al. Eutrophication management in surface waters using lanthanum modified bentonite:A review[J]. Water Research, 2016, 97:162-174.
    [4] ZAMPARAS M, ZACHARIAS I. Restoration of eutrophic freshwater by managing internal nutrient loads. A review[J]. Science of the Total Environment, 2014, 496:551-562.
    [5] WANG C H, BAI L L, JIANG H L, et al. Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents[J]. Science of the Total Environment, 2016, 557-558:479-488.
    [6] YIN H B, KONG M, HAN M X, et al. Influence of sediment resuspension on the efficacy of geoengineering materials in the control of internal phosphorous loading from shallow eutrophic lakes[J]. Environmental Pollution, 2016, 219:568-579.
    [7] SU Y, ZHANG C, LIU J, et al. Assessing the impacts of phosphorus inactive clay on phosphorus release control and phytoplankton community structure in eutrophic lakes[J]. Environmental Pollution, 2016, 219:620-630.
    [8] 朱广伟, 李静, 朱梦圆, 等. 锁磷剂对杭州西湖底泥磷释放的控制效果[J]. 环境科学, 2017, 38(4):1451-1459.

    ZHU G W, LI J, ZHU M Y, et al. Efficacy of Phoslock® on the reduction of sediment phosphorus release in West Lake, Hangzhou, China[J]. Environmental Science, 2017, 38(4):1451-1459(in Chinese).

    [9] WANG C H, LIANG J C, PEI Y S, et al. A method for determining the treatment dosage of drinking water treatment residuals for effective phosphorus immobilization in sediments[J]. Ecological Engineering, 2013, 60:421-427.
    [10] WANG C, QI Y, PEI Y. Laboratory investigation of phosphorus immobilization in lake sediments using water treatment residuals[J]. Chemical Engineering Journal, 2012, 209:379-385.
    [11] WANG C, BAI L, PEI Y. Assessing the stability of phosphorus in lake sediments amended with water treatment residuals[J]. Journal of Environmental Management, 2013, 122:31-36.
    [12] YIN H, KONG M. Reduction of sediment internal P-loading from eutrophic lakes using thermally modified calcium-rich attapulgite-based thin-layer cap[J]. Journal of Environmental Management, 2015, 151:178-185.
    [13] 刘新, 王秀, 赵珍, 等. 风浪扰动对底泥内源磷钝化效果的影响[J]. 中国环境科学, 2017, 37(8):3064-3071.

    LIU X, WANG X, ZHAOZ, et al. Effect of wind and wave disturbance on passivation of internal phosphorus in sediment[J]. China Environmental Science, 2017, 37(8):3064-3071(in Chinese).

    [14] 杨孟娟, 林建伟, 詹艳慧, 等. 锆改性沸石活性覆盖控制重污染河道底泥氮磷释放研究[J]. 农业环境科学学报, 2013, 32(12):2460-2470.

    YANG M J, LIN J W, ZHAN Y H, et al. Releases of ammonium and phosphorus from river sediments capped with zirconium-modified zeolite[J]. Journal of Agro-Environment Science, 2013, 32(12):2460-2470(in Chinese).

    [15] FAN Y, LI Y W, WU D Y, et al. Application of zeolite/hydrous zirconia composite as a novel sediment capping material to immobilize phosphorus[J]. Water Research, 2017, 123:1-11.
    [16] 杨孟娟, 林建伟, 詹艳慧, 等. 铝和锆改性沸石对太湖底泥-水系统中溶解性磷酸盐的固定作用[J]. 环境科学研究, 2014, 27(11):1351-1359.

    YANG M J, LIN J W, ZHAN Y H, et al. Immobilization of phosphate in Taihu Lake sediment-water systems using aluminum-modified zeolites and zirconium-modified zeolites as amendments[J]. Research of Environmental Sciences, 2014, 27(11):1351-1359(in Chinese).

    [17] YANG M J, LIN J W, ZHAN Y H, et al. Adsorption of phosphate from water on lake sediments amended with zirconium-modified zeolites in batch mode[J]. Ecological Engineering, 2014, 71:223-233.
    [18] YANG M J, LIN J W, ZHAN Y H, et al. Immobilization of phosphorus from water and sediment using zirconium-modified zeolites[J]. Environmental Science and Pollution Research, 2015, 22(5):3606-3619.
    [19] 章喆, 林建伟, 詹艳慧, 等. 锆改性高岭土覆盖对底泥与上覆水之间磷迁移转化的影响[J]. 环境科学, 2016, 37(4):1427-1436.

    ZHANG Z, LIN J W, ZHAN Y H, et al. Effect of zirconium modified kaolin-based cap on migration and transformation of phosphorus between sediment and overlying water[J]. Environmental Science, 2016, 37(4):1427-1436(in Chinese).

    [20] LIN J W, WANG H, ZHAN Y H, et al. Evaluation of sediment amendment with zirconium-reacted bentonite to control phosphorus release[J]. Environmental Earth Sciences, 2016, 75(11):942-958.
    [21] LIN J W, HE S Q, ZHANG H, et al. Evaluation of phosphate adsorption on zirconium/magnesium-modified bentonite[J]. Environmental Technology, 2018, https://doi.org/10.1080/09593330.2018.1505966.
    [22] TAN K L, HAMEED B H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74:25-48.
    [23] TRAN H N, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions:A critical review[J]. Water Research, 2017, 120:88-116.
    [24] ZAMPARAS M, GIANNI A, STATHI P, et al. Removal of phosphate from natural waters using innovative modified bentonites[J]. Applied Clay Science, 2012, 62-63:101-106.
    [25] 穆凯艳, 赵田甜, 张樱美, 等. 膨润土载锆除磷复合材料的研究[J]. 环境工程, 2014, 32(3):60-64.

    MU K Y, ZHAO T T, ZHANG Y M, et al. Study on phosphorus removal using zirconium-modified bentonite as composite materials[J]. Environmental Engineering, 2014, 32(3):60-64(in Chinese).

    [26] 商丹红, 包敏. 铁基膨润土对水中磷酸根的吸附热力学及动力学研究[J]. 环境工程学报, 2014, 8(5):1982-1986.

    SHANG D H, BAO M. Study on kinetics and thermodynamics for phosphate in aqueous solution adsorption onto iron-modified bentonite[J]. Chinese Journal of Environmental Engineering, 2014, 8(5):1982-1986(in Chinese).

    [27] PAWAR R R, GUPTA P, LALHMUNSIAMA, et al. Al-intercalated acid activated bentonite beads for the removal of aqueous phosphate[J]. Science of the Total Environment, 2016, 572:1222-1230.
    [28] YAN L G, XU Y Y, YU H Q, et al. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites[J]. Journal of Hazardous Materials, 2010, 179(1-3):244-250.
    [29] HUANG W Y, CHEN J, HE F, et al. Effective phosphate adsorption by Zr/Al-pillared montmorillonite:Insight into equilibrium, kinetics and thermodynamics[J]. Applied Clay Science, 2015, 104:252-260.
    [30] TIAN S, JIANG P, NING P, et al. Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite[J]. Chemical Engineering Journal, 2009, 151(1-3):141-148.
    [31] MA L, ZHU J, XI Y, et al. Adsorption of phenol, phosphate and Cd(Ⅱ) by inorganic-organic montmorillonites:A comparative study of single and multiple solute[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 497:63-71.
    [32] 张文豪, 饶伟, 张亚楠, 等. 镁铝双氢氧化物和镁铁铝改性蒙脱土去除水体中磷的吸附效果研究[J]. 农业环境科学学报, 2011, 30(10):2061-2067.

    ZHANG W H, RAO W, ZHANG Y N, et al. Adsorption effects of phosphate from aqueous solution using LDH and Mg/Fe/Al modified montmorillonite[J]. Journal of Agro-Environment Science, 2011,30(10):2061-2067(in Chinese).

    [33] 姜博汇, 林建伟, 詹艳慧, 等. 不同锆负载量锆改性膨润土对水中磷酸盐吸附作用的对比[J]. 环境科学, 2017, 38(6):2400-2411.

    JINAG B H, LIN J W, ZHAN Y H, et al. Comparison of phosphate adsorption onto zirconium-modified bentonites with different zirconium loading levels[J]. Environmental Science, 2017, 38(6):2400-2411(in Chinese).

    [34] LIN J W, ZHAN Y H, WANG H, et al. Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide[J]. Chemical Engineering Journal, 2017, 309:118-129.
    [35] QIN K, LI F, XU S, et al. Sequential removal of phosphate and cesium by using zirconium oxide:A demonstration of designing sustainable adsorbents for green water treatment[J]. Chemical Engineering Journal, 2017, 322:275-280.
    [36] JOHIR M A H, PRADHAN M, LOGANATHAN P, et al. Phosphate adsorption from wastewater using zirconium (IV) hydroxide:Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies[J]. Journal of Environmental Management, 2016, 167:167-174.
    [37] LIU H L, SUN X F, YIN C Q, et al. Removal of phosphate by mesoporous ZrO2[J]. Journal of Hazardous Materials, 2008, 151(2-3):616-622.
    [38] ZONG E M, WEI D, WAN H Q, et al. Adsorptive removal of phosphate ions from aqueous solution using zirconia-functionalized graphite oxide[J]. Chemical Engineering Journal, 2013, 221:193-203.
    [39] ZONG E M, LIU X H, JIANG J H, et al. Preparation and characterization of zirconia-loaded lignocellulosic butanol residue as a biosorbent for phosphate removal from aqueous solution[J]. Applied Surface Science, 2016, 387:419-430.
    [40] FANG L P, WU B L, LO I M C. Fabrication of silica-free superparamagnetic ZrO2@Fe3O4 with enhanced phosphate recovery from sewage:Performance and adsorption mechanism[J]. Chemical Engineering Journal, 2017, 319:258-267.
    [41] LIN J W, WANG X X, ZHAN Y H. Effect of precipitation pH and coexisting magnesium ion on phosphate adsorption onto hydrous zirconium oxide[J]. Journal of Environmental Science, 2018, https://doi.org/10.1016/j.jes.2018.04.023.
  • 加载中
计量
  • 文章访问数:  758
  • HTML全文浏览数:  744
  • PDF下载数:  25
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-05-30
  • 刊出日期:  2019-04-15

锆负载量对锆镁改性膨润土吸附水中磷酸盐的影响

  • 1.  上海海洋大学海洋生态与环境学院, 上海, 201306;
  • 2.  浙江工业大学环境学院, 杭州, 310032
基金项目:

国家自然科学基金(51408354,50908142),上海市自然科学基金(15ZR1420700),上海市大学生创新项目和上海海洋大学优秀本科生进实验室项目资助.

摘要: 制备了锆氧化物(ZrO2)含量分别为2.98%、7.81%、13.73%和33.70%的4种锆镁改性膨润土,并考察了锆负载量对锆镁改性膨润土吸附水中磷酸盐的影响.结果表明,较高的吸附剂投加量有利于水中磷酸盐被锆镁改性膨润土所吸附去除.锆镁改性膨润土吸附水中磷酸盐的动力学过程符合准二级动力学模型.锆镁改性膨润土对水中磷酸盐的吸附等温行为可以采用Langmuir、Freundlich和Dubinin-Redushckevich (D-R)等温吸附模型进行描述.增加溶液pH值不会导致锆镁改性膨润土对水中磷酸盐吸附能力的下降.锆镁改性膨润土对水中磷酸盐的吸附能力随其锆含量的增加而增加.但是,从总体上,锆镁改性膨润土中单位质量ZrO2对水中磷酸盐的最大吸附量则随其锆含量的增加而降低.研究结果说明,锆镁改性膨润土适合作为一种吸附剂去除水中的磷酸盐,较高的锆负载量有利于增强锆镁改性膨润土吸附水中磷酸盐的能力,而较低的锆负载量则有利于提高锆镁改性膨润土中单位质量ZrO2对水中磷酸盐的吸附能力.

English Abstract

参考文献 (41)

目录

/

返回文章
返回