微生物燃料电池阳极产电菌电子转移主要机制及其影响因素
Research progress on electron transfer mechanism and its influencing factors on microbial fuel cells anode exoelectrogens
-
摘要: 微生物燃料电池(microbial fuel cells,MFCs)能够将有机污染物化学能转化为电能,有望成为解决环境和能源问题的重要技术之一.但微生物代谢产电效率低制约其规模化应用,电子的产生及转移过程也将直接影响MFCs电能输出.本文综述了MFCs产电菌胞内电子传递及胞外电子转移机制近年来的研究进展,着重总结了阳极产电菌胞外电子传递方式以及促进胞外电子传递能力的途径,阐述了电子转移过程存在的影响因素及其作用机理,并指出了MFCs今后应用中面临的问题及发展方向.Abstract: Microbial fuel cells (MFCs) recovering the energy stored in chemical bonds in organic pollutants are expected to be an important solution to environmental and energy problems. However, issues such as low coulombic efficiency restricted MFCs' application. Especially the generation and transfer process of electrons directly affected the power output. We summarized some latest research advances in the mechanisms of intracellular and extracellular electron transfer, emphatically the extracellular electron transfer and the means to promote it. The influencing factors were described and the potential problems and prospects were addressed at the end.
-
-
[1] LOGAN B E. Microbial fuel cells[M]. John Wiley & Son, Hoboken, New Jerseys, 2008. [2] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells:Methodology and technology[J]. Environmental Science & Technology, 2006, 40(17):5181-5192. [3] 刘若男, 赵博玮, 岳秀萍. 曝气量对微生物燃料电池脱氮的影响[J]. 环境化学, 2018, 37(6):1317-1326. LIU R N, ZHAO B W, YUE X P. Effect of aeration rate on nitrogen removal by microbial fuel cells[J].Environmental Chemistry, 2018, 37(6):1317-1326(in Chinese).
[4] POTTER M C. Electrical effects accompanying the decomposition of organic compounds[J]. Proceedings of the Royal Society of London, 1911, 84(571):260-276. [5] SINGH L, WAHID Z A. Methods for enhancing bio-hydrogen production from biological process:A review[J]. Journal of Industrial & Engineering Chemistry, 2015, 21(1):70-80. [6] JIANG Y, LIANG P, LIU P, et al. A cathode-shared microbial fuel cell sensor array forwater alert system[J]. International Journal of Hydrogen Energy, 2017, 42(7):4342-4328. [7] WANG H, LUO H, FALLGREN P H, et al. Bioelectrochemical system platform for sustainable environmental remediation and energy generation[J]. Biotechnology Advances, 2015, 33(3-4):317-334. [8] RASCHITOR A, SOREANU G, FERNANDEZ-MARCHANTE C M, et al. Bioelectro-Claus processes using MFC technology:Influence of co-substrate[J]. Bioresource Technology, 2015, 189:94-98. [9] FAN Y, HU H, LIU H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration[J]. Journal of Power Sources, 2007, 171(2):348-354. [10] LIEW K B, WAN R W D, GHASEMI M, et al. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells:A review[J]. International Journal of Hydrogen Energy, 2014, 39(10):4870-4883. [11] SAJANA T K, GHANGREKAR M M, MITRA A. Effect of operating parameters on the performance of sediment microbial fuel cell treating aquaculture water[J]. Aquacultural Engineering, 2014, 61(8):17-26. [12] 顾熠澐. 微生物燃料电池输出功率影响因素综述[J]. 水电与新能源, 2014, 28(2):69-74. GU Y Y. Output power and its influencing factors of microbial fuel cells:A review[J]. Hydropower and New Energy, 2014, 28(2):69-74(in Chinese).
[13] SCHR DER U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency[J]. Physical Chemistry Chemical Physics, 2007, 9(21):2619-2629. [14] KUMAR R, SINGH L, WAHID Z A, et al. Exoelectrogens in microbial fuel cells toward bioelectricity generation:A review[J]. International Journal of Energy Research, 2015, 39(8):1048-1067. [15] PARK T J, DING W, CHENG S, et al. Microbial community in microbial fuel cell (MFC) medium and effluent enriched with purple photosynthetic bacterium (Rhodopseudomonas sp.)[J]. Amb Express, 2014, 4(1):1-8. [16] CHAUDHURI S K, LOVLEY D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J]. Nature Biotechnology, 2003, 21(10):1229-1232. [17] REZAEI F, XING D, WAGNER R C, et al. Simultaneous cellulose degradation and electricity production by enterobacter cloacae in a microbial fuel cell[J]. Applied and Environmental Microbiology, 2009, 75(11):3673-3678. [18] TOH H, SHARMA V K, OSHIMA K, et al. Complete genome sequences of Arcobacter butzleri ED-1 and Arcobacter sp. strain L, both isolated from a microbial fuel cell[J]. Journal of Bacteriology, 2011, 193(22):6411-6412. [19] BOND D R, HOLMES D E, TENDER L M, et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science, 2002, 295(5554):483-485. [20] DENG H, XUE H, ZHONG W. A novel exoelectrogenic bacterium phylogenetically related to clostridium sporogenes isolated from copper contaminated soil[J]. Electroanalysis, 2017, 29(5):1294-1300. [21] XU S, LIU H. New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell[J]. Journal of Applied Microbiology, 2011, 111(5):1108-1115. [22] TOTH E M, KEKI Z, BOHUS V, et al. Aquipuribacter hungaricus gen. nov., sp. nov., an actinobacterium isolated from the ultrapure water system of a power plant[J]. International Journal of Systematic & Evolutionary Microbiology, 2012, 62(Pt 3):556-562. [23] LOVLEY D R, UEKI T, ZHANG T, et al. Geobacter:The microbe electric's physiology, ecology, and practical applications[J]. Advances in Microbial Physiology, 2011, 59:1-100. [24] 刘鹏程, 朱雯雯, 肖翔. 产电微生物Shewanella菌厌氧呼吸代谢网络研究进展[J]. 微生物学通报, 2015, 42(11):2238-2244. LIU P C, ZHU W W, XIAO X. Metabolic networks of electricigens Shewanella for anaerobic respiration[J]. Microbiology China, 2015, 42(11):2238-2244(in Chinese).
[25] HEIDELBERG J F, PAULSEN I T, NELSON K E, et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis[J]. Nature Biotechnology, 2002, 20(11):1118-1123. [26] BREUER M, ROSSO K M, BLUMBERGER J, et al. Multi-haem cytochromes in Shewanella oneidensis MR-1:Structures, functions and opportunities[J]. Journal of the Royal Society Interface, 2015, 12(102):1-27. [27] LI F, LI Y, SUN L M, et al. Modular engineering intracellular NADH regeneration boosts extracellular electron transfer of Shewanella oneidensis MR-1[J]. Acs Synthetic Biology, 2018, 7(3):885-895. [28] SAFFARINI D A, BLUMERMAN S L, MANSOORABADI K J. Role of menaquinones in Fe(Ⅲ) reduction by membrane fractions of Shewanella putrefaciens[J]. Journal of Bacteriology, 2002, 184(3):846-848. [29] 马晨, 周顺桂, 庄莉, 等微生物胞外呼吸电子传递机制研究进展[J]. 生态学报, 2011, 31(7):2008-2018. MA C, ZHOU S G, ZHUANG L, et al. Electron transfer mechanism of extracellular respiration:a review[J]. Acta Ecologica Sinica 2011, 31(7):2008-2018(in Chinese).
[30] LIU Y, WANG Z, LIU J, et al. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA[J]. Environmental Microbiology Reports, 2014, 6(6):776-785. [31] SHI L, SQUIER T C, ZACHARA J M, et al. Respiration of metal (hydr)oxides by Shewanella and Geobacter:A key role for multihaem c-type cytochromes[J]. Molecular Microbiology, 2010, 65(1):12-20. [32] 许杰龙, 周顺桂, 袁勇, 等. 有"生命"的电线:浅析微生物纳米导线电子传递机制及其应用[J]. 化学进展, 2012,24(9):1794-1800. XU J L, ZHOU S G, YUAN Y. Live Wire:A review on electron transfer mechanism and applications of microbial nanowires[J]. Progress in Chemistry, 2012, 24(9):1794-1800(in Chinese).
[33] REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045):1098-1101. [34] GORBY YA, YANINA S, MCLEAN JS, et al. Electrically conductive bacterial nanowires produced by shewanella oneidensis strain mr-1 and other microorganisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(30):11358-11363. [35] MALVANKAR N S, LOVLEY D R. Microbial nanowires:A new paradigm for biological electron transfer and bioelectronics[J]. Chemsuschem. 2012, 5(6):1039-1046. [36] LEUNG K M, WANGER G, EL-NAGGAR M Y, et al. Shewanella oneidensis MR-1 bacterial nanowires exhibit p-Type, tunable electronic behavior[J]. Nano Letters, 2013, 13(6):2407-2411. [37] LEUNG K M, WANGER G, GUO Q, et al. Bacterial nanowires:conductive as silicon, soft as polymer[J]. Soft Matter, 2011, 7(14):6617-6621. [38] EL-NAGGAR M Y, GORBY Y A, XIA W, et al. The molecular density of states in bacterial nanowires[J]. Biophysical Journal, 2008, 95(1):L10-L12. [39] KOTLOSKI N J, GRALNICK J A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis[J]. Mbio, 2013, 4(1):169-172. [40] RABAEY K, BOON N, HOFTE M, et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Environmental Science & Technology, 2005, 39(9):3401-3408. [41] FERAPONTOVA E, SCHMENGLER K, B RCHERS T, et al. Effect of cysteine mutations on direct electron transfer of horseradish peroxidase on gold[J]. Biosensors & Bioelectronics, 2002, 17(11):953-963. [42] BABANOVA S, MATANOVIC I, CHAVEZ M S, et al. Role of quinones in electron transfer of PQQ-Glucose dehydrogenase anodes-mediation or orientation effect[J]. Journal of the American Chemical Society, 2015, 137(24):7754-7762. [43] MARSILI E, BARON D B, SHIKHARE I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10):3968-3973. [44] YOU L X, LIU L D, XIAO Y, et al. Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1[J]. Bioelectrochemistry, 2018, 119; 196-202. [45] GRININGER M, STAUDT H, JOHANSSON P, et al. Dodecin is the key player in flavin homeostasis of archaea[J]. Journal of Biological Chemistry, 2009, 284(19):13068-13076. [46] 刘利丹, 肖勇, 陈必链, 等. 微生物电化学系统电子中介体[J]. 化学进展, 2014, 26(11):1859-1866. LIU L D, XIAO Y, WU Y H. Electron transfer mediators in microbial electrochemical systems[J].Progress in Chemistry, 2014, 26(11):1859-1866(in Chinese).
[47] 马金莲, 马晨, 汤佳, 等. 电子穿梭体介导的微生物胞外电子传递:机制及应用[J]. 化学进展, 2015, 27(12):1833-1840. MA J L, MA C, TANG J, et al. Mechanisms and applications of electron shuttle-mediated extracellular electron transfer[J].Progress in Chemistry, 2015, 27(12):1833-1840(in Chinese).
[48] HARRIS H W, GREENBERG E P. Electrokinesis is a microbial behavior that requires extracellular electron transport[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1):326-331. [49] KUMAR A, HSU H H, KAVANAGH P, et al. The ins and outs of microorganism-electrode electron transfer reactions[J]. Nature Reviews Chemistry, 2017, 1(3):1-58. [50] FAPETU S, KESHAVARZ T, CLEMENTS M, et al. Contribution of direct electron transfer mechanisms to overall electron transfer in microbial fuel cells utilising Shewanella oneidensis as biocatalyst[J]. Biotechnology Letters, 2016, 38(9):1465-1473. [51] ZHENG T, XU Y S, YONG X Y, et al. Endogenously enhanced biosurfactant production promotes electricity generation from microbial fuel cells[J]. Bioresource Technology, 2015, 197:416-421. [52] ZHANG Y, JIANG J, ZHAO Q, et al. Analysis of functional genomes from metagenomes:Revealing the accelerated electron transfer in microbial fuel cell with rhamnolipid addition[J]. Bioelectrochemistry, 2018, 119:59-67. [53] ROTARU A E, SHRESTHA P M, LIU F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied & Environmental Microbiology, 2014, 80(15):4599-4605. [54] SUMMERS Z M, FOGARTY H E, LEANG C, et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J]. Science, 2010, 330(6009):1413-1415. [55] SCHAEFER A L, GREENBERG E P, OLIVER C M, et al. A new class of homoserine lactone quorum-sensing signals[J]. Nature, 2008, 454(7204):595-599. [56] PHAM T H, BOON N, AELTERMAN P, et al. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer[J]. Applied Microbiology & Biotechnology, 2008, 77(5):1119-1129. [57] 周婷, 余林鹏, 符力, 等. 微生物直接电子传递:甲烷代谢古菌研究进展[J]. 应用与环境生物学报, 2018, 24(5):1032-1040. ZHOU T, YU L P, FU L, et al. Microbial direct electron transfer:advances in its study in the metabolism of methane by Archaea[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(5):1032-1040(in Chinese).
[58] HA P T, LINDEMANN S R, SHI L, et al. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer[J]. Nature Communications, 2017, 8:1-7. [59] HUANG L, LIU X, TANG J, et al. Electrochemical evidence for direct interspecies electron transfer between Geobacter sulfurreducens and Prosthecochloris aestuarii [J]. Bioelectrochemistry, 2019, 127:21-25. [60] TERAVEST M A, ZAJDEL T J, AJO-FRANKLIN C M. The Mtr Pathway of Shewanella oneidensis MR-1 Couples Substrate Utilization to Current Production in Escherichia coli[J]. Chemelectrochem, 2015, 1(11):1874-1879. [61] FENG J, QIAN Y, WANG Z, et al. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway[J]. Journal of Biotechnology, 2018, 275:1-6. [62] SEKAR N, JAIN R, YAN Y, et al. Enhanced photo-bioelectrochemical energy conversion by genetically engineered cyanobacteria[J]. Biotechnology & Bioengineering, 2016, 113(3):675-679. [63] SEKAR N, WANG J, ZHOU Y, et al. Role of respiratory terminal oxidases in the extracellular electron transfer ability of cyanobacteria[J]. Biotechnology & Bioengineering, 2018, 115(5):1361-1366. [64] LIN T, DING W, SUN L, et al. Engineered Shewanella oneidensis-reduced graphene oxide biohybrid with enhanced biosynthesis and transport of flavins enabled a highest bioelectricity output in microbial fuel cells[J]. Nano Energy, 2018, 50:639-648. [65] HAN S, GAO X, YING H, et al. NADH gene manipulation for advancing bioelectricity in Clostridium ljungdahlii microbial fuel cells[J]. Green Chemistry, 2016, 18(8):2473-2478. [66] YONG X Y, FENG J, CHEN Y L, et al. Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell[J]. Biosensors & Bioelectronics, 2014, 56(24):19-25. [67] LI F, LI Y, CAO Y, et al. Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis [J]. Nature Communications, 2018, 9:1-13. [68] CHEN M, ZHOU X, LIU X, et al. Facilitated extracellular electron transfer of Geobacter sulfurreducens biofilm with in situ formed gold nanoparticles[J]. Biosensors & Bioelectronics, 2018, 108:20-26. [69] KIRCHHOFER N D, RENGERT Z D, DAHLQUIST F W, et al. A ferrocene-based conjugated oligoelectrolyte catalyzes bacterial electrode respiration[J]. Chem, 2017, 2(2):240-257. [70] DEPLANCHE K, BENNETT J A, MIKHEENKO I P, et al. Catalytic activity of biomass-supported Pd nanoparticles:Influence of the biological component in catalytic efficacy and potential application in ‘green’ synthesis of fine chemicals and pharmaceuticals[J]. Applied Catalysis B Environmental, 2014, 147:651-665. [71] NIU Z Y, JIA Y T, CHEN Y C, et al. Positive effects of bio-nano Pd (0) toward direct electron transfer in Pseudomona putida and phenol biodegradation[J]. Ecotoxicology & Environmental Safety, 2018, 161:356-363. [72] ISLAM M A, ETHIRAJ B, CHENG C K, et al. An insight of synergy between Pseudomonas aeruginosa and Klebsiella variicola in microbial fuel cell[J]. Acs Sustainable Chemistry & Engineering, 2018, 6(3):4130-4137. [73] FERNANDO E, KESHAVARZ T, KYAZZE G. External resistance as a potential tool for influencing azo dye reductive decolourisation kinetics in microbial fuel cells[J]. International Biodeterioration & Biodegradation, 2014, 89(4):7-14. [74] LIU T, YU Y, LI D, et al. The effect of external resistance on biofilm formation and internal resistance in Shewanella inoculated microbial fuel cells[J]. RSC Advances, 2016, 6(24):20317-20323. [75] JUNG S, REGAN J M. Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells[J]. Applied and Environmental Microbiology, 2011, 77(2):564-571. [76] KIM H, KIM B, KIM J, et al. Electricity generation and microbial community in microbial fuel cell using low-pH distillery wastewater at different external resistances[J]. Journal of Biotechnology, 2014, 186:175-180. [77] MCLEAN J S, WANGER G, GORBY Y A, et al. Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities[J]. Environmental Science & Technology, 2010, 44(7):2721-2727. [78] FLINT S H, BROOKS J D, BREMER P J. Properties of the stainless steel substrate, influencing the adhesion of thermo-resistant streptococci[J]. Journal of Food Engineering, 2000, 43(4):235-242. [79] ZHAO C E, WANG W J, SUN D, et al. Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells[J]. Chemistry-A European Journal, 2014, 20(23):7091-7097. [80] SUN D Z, YU Y Y, XIE R R, et al. In-situ growth of graphene/polyaniline for synergistic improvement of extracellular electron transfer in bioelectrochemical systems[J]. Biosensors & Bioelectronics, 2017, 87:195-202. [81] SUN J J, ZHAO H Z, YANG Q Z, et al. A novel layer-by-layer self-assembled carbon nanotube-based anode:preparation, characterization, and application in microbial fuel cell[J]. Electrochimica Acta, 2010, 55(9):3041-3047. [82] SHARMA T, REDDY A L M, CHANDRA T S, et al. Development of carbon nanotubes and nanofluids based microbial fuel cell[J]. International Journal of Hydrogen Energy, 2008, 33(22):6749-6754. [83] ZHAO Y, NAKANISHI S, WATANABE K, et al. Hydroxylated and aminated polyaniline nanowire networks for improving anode performance in microbial fuel cells[J]. Journal of Bioscience & Bioengineering, 2011, 112(1):63-66. [84] YUAN Y, KIM S H. Polypyrrole-coated reticulated vitreous carbon as anode in microbial fuel cell for higher energy output[J]. Bulletin-Korean Chemical Society, 2008, 29(29):168-172. [85] ZHANG Y, MO G, LI X, et al. A graphene modified anode to improve the performance of microbial fuel cells[J]. Journal of Power Sources, 2011, 196(13):5402-5407. [86] LIU J, QIAO Y, GUO C X, et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells[J]. Bioresource Technology, 2012, 114(3):275-280. [87] LIU H, CHENG S, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology, 2005, 39(14):5488-5593. [88] 贾伯阳, 刘红. 微生物燃料电池隔膜材料分析[C]. 2010中国可再生能源科技发展大会论文集, 2010. JIA B Y, LIU H. Diaphragm material analysis of microbial fuel cell[C]. Proceedings of 2010 China technonogical development of renewable energy resource, 2010(in Chinese). [89] 刘雷. 微生物燃料电池(MFCs)性能的影响因素及苯酚为底物的研究[D]. 扬州:扬州大学, 2013. LIU L. Factors affecting the performance of microbial fuel cells (MFCs) studies on phenol as substrate[D]. Yangzhou:Yangzhou University, 2013(in Chinese). [90] LIU Y, TAY J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Research, 2002, 36(7):1653-1665. [91] CELMER D, OLESZKIEWICZ J A, CICEK N. Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater[J]. Water Research, 2008, 42(12):3057-3065. [92] VILAJELIU-PONS A, BANERAS L, PUIG S, et al. External resistances applied to MFC affect core microbiome and swine manure treatment efficiencies[J]. Plos One, 2016, 11(10):1-19. -

计量
- 文章访问数: 4482
- HTML全文浏览数: 4482
- PDF下载数: 153
- 施引文献: 0