溶解性有机质的表面吸附行为及其对金属基纳米颗粒环境行为的影响

何莹, 刘洋, 陈治廷, 储刚, 赵婧, 仇浩, 吴敏. 溶解性有机质的表面吸附行为及其对金属基纳米颗粒环境行为的影响[J]. 环境化学, 2019, (8): 1757-1767. doi: 10.7524/j.issn.0254-6108.2018102902
引用本文: 何莹, 刘洋, 陈治廷, 储刚, 赵婧, 仇浩, 吴敏. 溶解性有机质的表面吸附行为及其对金属基纳米颗粒环境行为的影响[J]. 环境化学, 2019, (8): 1757-1767. doi: 10.7524/j.issn.0254-6108.2018102902
HE Ying, LIU Yang, CHEN Zhiting, CHU Gang, ZHAO Jing, QIU Hao, WU Min. Surface adsorption of dissolved organic matters and their effects on environmental behaviors of metal-based nanoparticles[J]. Environmental Chemistry, 2019, (8): 1757-1767. doi: 10.7524/j.issn.0254-6108.2018102902
Citation: HE Ying, LIU Yang, CHEN Zhiting, CHU Gang, ZHAO Jing, QIU Hao, WU Min. Surface adsorption of dissolved organic matters and their effects on environmental behaviors of metal-based nanoparticles[J]. Environmental Chemistry, 2019, (8): 1757-1767. doi: 10.7524/j.issn.0254-6108.2018102902

溶解性有机质的表面吸附行为及其对金属基纳米颗粒环境行为的影响

    通讯作者: 刘洋, E-mail: minipig6@163.com
  • 基金项目:

    国家自然科学基金青年基金(41703111),云南省教育厅科学研究资助性项目(2016zzx035)和昆明理工大学省级人才培养项目(KKSY201622012)资助.

Surface adsorption of dissolved organic matters and their effects on environmental behaviors of metal-based nanoparticles

    Corresponding author: LIU Yang, minipig6@163.com
  • Fund Project: Supported by the National Natural Science Foundation of China (41703111), Science Research Funded from Yunnan Provincial Department of Education (2016zzx035) and Talent Cultivation Project at KMUST (KKSY201622012).
  • 摘要: 随着纳米科技的不断进步,越来越多的金属基纳米颗粒(MNPs)被添加到油漆、除草剂、杀虫剂等产品中.其大量应用使得MNPs在储存、运输、使用以及处理等过程中不可避免地进入到环境中,从而对生物乃至人类健康产生威胁.环境中丰富的溶解性有机质(DOMs)容易通过静电吸引、配体交换、疏水性等作用吸附到纳米颗粒的表面,从而影响MNPs的迁移转化及生态效应.DOMs的吸附可能会降低MNPs表面电势,加速颗粒聚集,或堵塞表面微孔而减小颗粒的有效暴露面积,抑制金属离子的释放;DOMs吸附也可能增加其释放出的金属离子发生络合反应的几率,从而促进MNPs的溶解.以上矛盾结论的产生是因为DOMs在MNPs表面的吸附行为机制还不十分清晰,有待更深入的研究.因此,本文就DOMs在MNPs表面产生吸附的机理,及其对MNPs聚集、分散及溶解等过程产生的影响进行了系统的评述,并重点剖析了如何量化DOMs在MNPs表面的吸附作用,及不同环境因子对DOMs在MNPs表面的吸附行为的影响,提出为了提高MNPs环境行为及生态效应评估的准确性,建立DOMs吸附作用与MNPs聚集、分散和溶解间的相关关系将是今后研究的重点.
  • 加载中
  • [1] SCHRAND A M, RAHMAN M F, HUSSAIN S M, et al. Metal-based nanoparticles and their toxicity assessment[J]. Wiley Interdisciplinary Reviews Nanomedicine & Nanobiotechnology, 2010, 2(5):544-568.
    [2] KAMAT P V, DIMITRIJEVI N M. Colloidal semiconductors as photocatalysts for solar energy conversion[J]. Solar Energy, 1990, 44(2):83-98.
    [3] 张立德, 牟季美. 纳米材料学[M]. 沈阳:辽宁科学技术出版社, 1994. ZHANG L D, MOU J M. Nano materials science[M]. Shenyang:Liaoning Science and Technology Press, 1994(in Chinese).
    [4] 彭红, 刘洋, 张锦胜, 等. 银纳米粒子材料应用研究进展[J]. 化工进展, 2017, 36(7):2525-2532.

    PENG H, LIU Y, ZHANG J S, et al. Progress in utilization of silver nanoparticle material[J]. Chemical Industry and Engineering Progress, 2017, 36(7):2525-2532(in Chinese).

    [5] 汪焕林, 王建宁, 张军. 纳米材料的应用[J]. 青海大学学报, 2002, 20(1):34-36.

    WANG H, WANG J N, ZHANG J. Application of nanomaterials[J]. Journal of Qinghai University, 2002, 20(1):34-36(in Chinese).

    [6] PICCINNO F, GOTTSCHALK F, SEEGER S, et al. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world[J]. Journal of Nanoparticle Research, 2012, 14(9):1109-1117.
    [7] 刘涛, 向垒, 余忠雄, 等. 水稻幼苗对纳米氧化铜的吸收及根系形态生理特征响应[J]. 中国环境科学, 2015, 35(5):1480-1486.

    LIU T, XIANG L, YU Z X, et al. Responses of morphological and physiological characteristics in rice (Oryza sativa L.) seedling roots to its uptake of CuO nanoparticles[J]. Chinese Environmental Science, 2015, 35(5):1480-1486(in Chinese).

    [8] KTEEBA S M, EL-ADAWI H I, EL-RAYIS O A, et al. Zinc oxide nanoparticle toxicity in embryonic zebrafish:Mitigation with different natural organic matter[J]. Environmental Pollution, 2017, 230:1125-1140.
    [9] DALAI S, ISWARYA V, BHUVANESHWARI M, et al. Different modes of TiO2 uptake by Ceriodaphnia dubia:relevance to toxicity and bioaccumulation[J]. Aquatic Toxicology, 2014, 152(4):139-146.
    [10] JIANG C, CASTELLON B T, MATSON C W, et al. Relative contributions of copper oxide nanoparticles and dissolved copper to cu uptake kinetics of gulf killifish (Fundulus grandis) embryos[J]. Environmental Science & Technology, 2017, 51(3):1395-1404.
    [11] WANG Z, XIA B, CHEN B, et al. Trophic transfer of TiO2 nanoparticles from marine microalga (Nitzschia closterium) to scallop (Chlamys farreri) and related toxicity[J]. Environmental Science Nano, 2016, 4(2):415-424.
    [12] WANG Z, ZHANG L, ZHAO J, et al. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter[J]. Environmental Science Nano, 2016, 3(2):240-255.
    [13] NEBBIOSO A, PICCOLO A. Molecular characterization of dissolved organic matter (DOM):A critical review[J]. Analytical & Bioanalytical Chemistry, 2013, 405(1):109-124.
    [14] TEMMINGHOFF E J M, SJOERD E A T M. VAN D Z, et al. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter[J]. Environmental Science & Technology, 1997, 31(4):1109-1115.
    [15] 凌婉婷, 徐建民, 高彦征, 等. 溶解性有机质对土壤中有机污染物环境行为的影响[J]. 应用生态学报, 2004, 15(2):326-330.

    LING W T, XU J M, GAO Y Z, et al. Influence of dissolved organic matter (DOM)on environmental behaviors of organic pollutants in soils[J]. Journal of Applied Ecology, 2004, 15(2):326-330(in Chinese).

    [16] 许中坚, 刘广深, 刘维屏. 土壤中溶解性有机质的环境特性与行为[J]. 环境化学, 2003, 22(5):427-433.

    XU Z G, LIU G S, LIU W P. Environmental characteristics and behavior of dissolved organic matter in soil[J]. Environmental Chemistry, 2003, 22(5):427-433(in Chinese).

    [17] REN M, HORN H, FRIMMEL F H. Aggregation behavior of TiO2 nanoparticles in municipal effluent:Influence of ionic strengthen and organic compounds[J]. Water Research, 2017, 123:678-686.
    [18] YU S, LIU J, YIN Y, et al. Interactions between engineered nanoparticles and dissolved organic matter:A review on mechanisms and environmental effects[J]. Journal of Environmental Sciences, 2018, 63(1):198-217.
    [19] GHOSH S, JIANG W, MCCLEMENTS J D, et al. Colloidal stability of magnetic iron oxide nanoparticles:Influence of natural organic matter and synthetic polyelectrolytes[J]. Langmuir, 2011, 27(13):8036-8043.
    [20] PHILIPPE A, SCHAUMANN G E. Interactions of dissolved organic matter with natural and engineered inorganic colloids:A review[J]. Environmental Science & Technology, 2014, 48(16):8946-8962.
    [21] JAYALATH S, WU H, LARSEN S C, et al. Surface adsorption of Suwannee river humic acid on TiO2 nanoparticles:A Study of pH and particle size[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2018, 34(9):3136-3145.
    [22] CHEN W, QIAN C, LIU X Y, et al. A two-dimensional correlation spectroscopic analysis on the interaction between humic acids and TiO2 nanopaticles[J]. Environmental Science & Technology, 2014, 48(19):11119-11126.
    [23] YANG K, LIN D, XING B. Interactions of humic acid with nanosized inorganic oxides[J]. Langmuir, 2009, 25(6):3571-3576.
    [24] JOHNSON S B, YOON T H, KOCAR B D, et al. Adsorption of organic matter at mineral/water interfaces. 2. Outer-sphere adsorption of maleate and implications for dissolution processes[J]. Langmuir, 2004, 20(12):4996-5006.
    [25] 郭金仓. 金属氧化物/水界面上NOM吸附机制的研究[D]. 武汉:武汉理工大学, 2009. GUO J C. Study on NOM adsorption mechanism on metal oxide/water surface[D].Wuhan:Wuhan University of Technology, 2009(in Chinese).
    [26] JOHNSON S B, YOON T H, SLOWEY A J, et al. Adsorption of organic matter at mineral/water interfaces:3. Implications of surface dissolution for adsorption of oxalate[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2004, 20(26):11480-11492.
    [27] 胡慧萍, 王梦, 丁治英, 等. FT-IR、XPS和DFT研究水杨酸钠在针铁矿或赤铁矿上的吸附机理[J]. 物理化学学报, 2016, 32(8):2059-2068.

    HU H P, WANG M, DING Z Y, et al. FT-IR, XPS and DFT study of the adsorption mechanism of sodium salicylate onto goethite or hematite[J]. Journal of Physical Chemistry, 2016, 32(8):2059-2068(in Chinese).

    [28] SUN D D, PEI F L. TiO2 microsphere for the removal of humic acid from water:Complex surface adsorption mechanisms[J]. Separation & Purification Technology, 2012, 91(19):30-37.
    [29] FAN J, LIU F, HU Y, et al. Effects of pH and ionic composition on sorption/desorption of natural organic matter on zero-valent iron and magnetite nanoparticles[J]. Water Science and Technology, 2015, 72(2):303-310.
    [30] 姚晨曦, 杨春信, 周成龙. Langmuir吸附等温式推导浅析[J]. 化学与生物工程, 2018, 35(1):31-35.

    YAO C X, YANG C X, ZHOU C L. Brief analysis of deduction of langmuir adsorption isotherm[J]. Chemical and Biological Engineering, 2018(1):31-35(in Chinese).

    [31] RAHMAN M S, WHALEN M, GAGNON G A. Adsorption of dissolved organic matter (DOM) onto the synthetic iron pipe corrosion scales (goethite and magnetite):Effect of pH[J]. Chemical Engineering Journal, 2013, 234(12):149-157.
    [32] 郭惠莹, 梁妮, 周丹丹, 等. 天然有机质模型化合物在无机矿物表面的吸附[J]. 环境化学, 2017, 36(3):564-571.

    GUO H Y, LIANG N, ZHOU D D, et al. Adsorption mechanisms of natural organic matter model compounds on inorganic minerals[J]. Environmental Chemistry, 2017, 36(3):564-571(in Chinese).

    [33] YANG K, XING B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase:Polanyi theory and its application[J]. Cheminform, 2010, 110(10):5989-6008.
    [34] YANG K, ZHU L, XING B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials[J]. Environmental Science & Technology, 2006, 40(6):1855-1861.
    [35] FRANCO C A, CORTéS F B, NASSAR N N. Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue[J]. Journal of Colloid & Interface Science, 2014, 425(7):168-177.
    [36] LI Z, LOWRY G V, FAN J, et al. High molecular weight components of natural organic matter preferentially adsorb onto nanoscale zero valent iron and magnetite[J]. Science of the Total Environment, 2018, 628-629:177-185.
    [37] CHEKLI L, PHUNTSHO S, ROY M, et al. Characterisation of Fe-oxide nanoparticles coated with humic acid and Suwannee River natural organic matter[J]. Science of the Total Environment, 2013, 461-462(7):19-27.
    [38] FENG L, HAN S K, WANG L S, et al. Sorption of phenylthioacetates on natural soil:Application of partition-adsorption mechanism and model[J]. Chemosphere, 1996, 33(11):2113-2120.
    [39] WEBER W J, MORRIS J C. Kinetics of adsorption on carbon from solution[J]. Asce Sanitary Engineering Division Journal, 1963, 1(2):1-2.
    [40] LI T, LIN D, LI L, et al. The kinetic and thermodynamic sorption and stabilization of multiwalled carbon nanotubes in natural organic matter surrogate solutions:The effect of surrogate molecular weight[J]. Environmental Pollution, 2014, 186:43-49.
    [41] ERHAYEM M, SOHN M. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter[J]. Science of the Total Environment, 2014, 468-469(4):249-257.
    [42] LI Z J, SHI B Y, WANG D S. Comparative study on adsorption behaviors of natural organic matter by powered activated carbons with different particle sizes[J]. Environmental Science, 2013, 34(11):4319-4324.
    [43] PETTIBONE J M, CWIERTNY D M, SCHERER M, et al. Adsorption of organic acids on TiO2 nanoparticles:Effects of pH, nanoparticle size, and nanoparticle aggregation[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2008, 24(13):6659-6667.
    [44] MATSUI Y, ANDO N, YOSHIDA T, et al. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon[J]. Water Research, 2011, 45(4):1720-1728.
    [45] 曾凡凤. 天然无机纳米颗粒对有机污染物的吸附作用与机理[D].杭州:浙江大学, 2014. ZENG F F. Sorption behavior and mechanisms of organic contaminants by natural inorganic nanoparticles[D]. Hangzhou:Zhejiang University, 2014(in Chinese).
    [46] LIANG L, LUO L, ZHANG S. Adsorption and desorption of humic and fulvic acids on SiO2, particles at nano-and micro-scales[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2011, 384(1):126-130.
    [47] PENG Y H, TSAI Y C, HSIUNG C E, et al. Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples[J]. Journal of Hazardous Materials, 2017, 322(Pt B):348-356.
    [48] 吕继涛. 金属氧化物纳米颗粒在环境介质中的化学形态转化及植物吸收[D].北京:中国科学院生态环境研究中心, 2013. LV J T. Transformation and plant uptake of engineered metal oxide nanoparticles in the environment[D]. Beijing:Research Center for Eco-Environmental Sciences Chinese Academy of Sciences, 2013(in Chinese).
    [49] LIU J, HURT R H. Ion release kinetics and particle persistence in aqueous nano-silver colloids[J]. Environmental Science & Technology, 2010, 44(6):2169-2175.
    [50] WANG L F, HABIBUL N, HE D Q, et al. Copper release from copper nanoparticles in the presence of natural organic matter[J]. Water Research, 2015, 68(15):12-23.
    [51] JIANG C J, AIKEN G R, HSU-KIM H. Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles[J]. Environmental Science & Technology, 2015, 49(19):11476-11484.
    [52] ZHANG W, YAO Y, SULLIVAN N, et al. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics[J]. Environmental Science & Technology, 2011, 45(10):4422-4428.
  • 加载中
计量
  • 文章访问数:  2352
  • HTML全文浏览数:  2352
  • PDF下载数:  47
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-10-29
何莹, 刘洋, 陈治廷, 储刚, 赵婧, 仇浩, 吴敏. 溶解性有机质的表面吸附行为及其对金属基纳米颗粒环境行为的影响[J]. 环境化学, 2019, (8): 1757-1767. doi: 10.7524/j.issn.0254-6108.2018102902
引用本文: 何莹, 刘洋, 陈治廷, 储刚, 赵婧, 仇浩, 吴敏. 溶解性有机质的表面吸附行为及其对金属基纳米颗粒环境行为的影响[J]. 环境化学, 2019, (8): 1757-1767. doi: 10.7524/j.issn.0254-6108.2018102902
HE Ying, LIU Yang, CHEN Zhiting, CHU Gang, ZHAO Jing, QIU Hao, WU Min. Surface adsorption of dissolved organic matters and their effects on environmental behaviors of metal-based nanoparticles[J]. Environmental Chemistry, 2019, (8): 1757-1767. doi: 10.7524/j.issn.0254-6108.2018102902
Citation: HE Ying, LIU Yang, CHEN Zhiting, CHU Gang, ZHAO Jing, QIU Hao, WU Min. Surface adsorption of dissolved organic matters and their effects on environmental behaviors of metal-based nanoparticles[J]. Environmental Chemistry, 2019, (8): 1757-1767. doi: 10.7524/j.issn.0254-6108.2018102902

溶解性有机质的表面吸附行为及其对金属基纳米颗粒环境行为的影响

    通讯作者: 刘洋, E-mail: minipig6@163.com
  • 1. 昆明理工大学环境科学与工程学院, 云南省土壤固碳与污染控制重点实验室, 昆明, 650500;
  • 2. 云南大学公共管理学院, 昆明, 650091;
  • 3. 安徽农业大学资源与环境学院, 合肥, 230036;
  • 4. 上海交通大学环境科学与工程学院, 上海, 200240
基金项目:

国家自然科学基金青年基金(41703111),云南省教育厅科学研究资助性项目(2016zzx035)和昆明理工大学省级人才培养项目(KKSY201622012)资助.

摘要: 随着纳米科技的不断进步,越来越多的金属基纳米颗粒(MNPs)被添加到油漆、除草剂、杀虫剂等产品中.其大量应用使得MNPs在储存、运输、使用以及处理等过程中不可避免地进入到环境中,从而对生物乃至人类健康产生威胁.环境中丰富的溶解性有机质(DOMs)容易通过静电吸引、配体交换、疏水性等作用吸附到纳米颗粒的表面,从而影响MNPs的迁移转化及生态效应.DOMs的吸附可能会降低MNPs表面电势,加速颗粒聚集,或堵塞表面微孔而减小颗粒的有效暴露面积,抑制金属离子的释放;DOMs吸附也可能增加其释放出的金属离子发生络合反应的几率,从而促进MNPs的溶解.以上矛盾结论的产生是因为DOMs在MNPs表面的吸附行为机制还不十分清晰,有待更深入的研究.因此,本文就DOMs在MNPs表面产生吸附的机理,及其对MNPs聚集、分散及溶解等过程产生的影响进行了系统的评述,并重点剖析了如何量化DOMs在MNPs表面的吸附作用,及不同环境因子对DOMs在MNPs表面的吸附行为的影响,提出为了提高MNPs环境行为及生态效应评估的准确性,建立DOMs吸附作用与MNPs聚集、分散和溶解间的相关关系将是今后研究的重点.

English Abstract

参考文献 (52)

返回顶部

目录

/

返回文章
返回