交流电场促进柳树修复镉污染土壤
Alternating current electric field promotes willow plant to remediate cadmium contaminated soil
-
摘要: 通过土壤盆栽试验的方法,研究在镉污染土壤中施加交流电场(0、0.5、1 V·cm-1)对土壤镉活性、柳树苗期生理生化及Cd吸收与积累的影响.结果表明,施加电场会略微影响土壤的pH值,土壤有效态镉含量随着电场梯度的增加而显著增加,其中1 V·cm-1处理的土壤有效态镉含量较对照提高了29.11%(P<0.05).施加电场有利于柳树苗期的生长,柳树株高、叶面积、生物量随着电压梯度的增加而增加,其中1 V·cm-1处理的柳树株高、叶面积、叶片、枝条生物量分别较对照显著提高了35.49%、22.52%、36.84%、85.00%(P<0.05).施加电场可以有利于根系形态指标的增加,其中0.5 V·cm-1处理的根系长度、表面积、根尖数均达到最高,分别显著高于对照49.96%、76.69%、43.46%(P<0.05).施加电场可促进柳树苗期光合作用,影响叶绿素荧光参数,其中0.5 V·cm-1处理的叶片净光合速率、气孔导度、PSⅡ光合电子传递量子效Υ(Ⅱ)、光化学淬灭系数qP、光合电子传递速率ETR均达到最高,分别较对照显著增加了36.00%、60.00%、22.86%、24.07%、22.35%(P<0.05).施加电场促进了柳树苗期对土壤镉的净化,但不同电压梯度对柳树镉吸收积累的效果不同,0.5 V·cm-1处理可通过生物量的提高,增加柳树对镉的积累,而1 V·cm-1处理通过生物量及促进柳树对土壤镉的吸收,增加柳树对镉的积累.交流电场联合植物修复技术,有利于提高植物对土壤镉的吸收积累,具有良好的应用前景.Abstract: A soil pot experiment was conducted to study the effects of alternating current (AC) electric field(0, 0.5, 1 V·cm-1)on cadmium (Cd) availability of soil and physiology and biochemistry of willow at seedling stage and the Cd absorption and accumulation. The results indicated that application of AC electric field slightly affected the pH value of the soil, but the soil available Cd concentrations increased greatly with increasing the electric field gradient. The available Cd concentration in soil treated with AC electric field of 1 V·cm-1 was 29.11% greater than that of the control (P<0.05). The application of AC electric field was beneficial to willow sapling growth. The plant height, leaf area and biomass of the willow saplings increased with the increase of voltage gradient:they were significantly higher in 1 V·cm-1 treated willow saplings than that of the control 35.49%, 22.52%, 36.84%, 85.00%, respectively (P<0.05). The application of AC electric field was also beneficial to root growth as indicated by root morphology index. The root length, root surface area and root tip number of 0.5 V·cm-1 treated willow saplings were the highest, which were significantly higher than the control 49.96%, 76.69% and 43.46% (P<0.05), respectively. Application of AC electric field also promoted photosynthesis and affected chlorophyll fluorescence parameters of willow saplings. The net photosynthetic rate (Pn), stomatal conductance (Gs), PSII photosynthetic electron transport quantum effect Υ(Ⅱ), photochemical quenching coefficient qP, photosynthetic electron transfer rate ETR of 0.5 V·cm-1 treated willow saplings were the highest, which were higher than the control 36.00%, 60.00%, 22.86%, 24.07% and 22.35% (P<0.05), respectively. Consequently, the application of AC electric field promoted the cleanup rate of Cd in soil by willow, but different voltage gradients resulted in different efficiency. The 0.5 V·cm-1 treatment increased Cd accumulation of willow by increasing plant biomass, while the 1 V·cm-1 treatment increased the Cd accumulation of willow by increasing plant biomass and promoting Cd uptake by the plants. Therefore, the AC electric field combined with phytoremediation technology improved the absorption and accumulation of Cd in plants, and could have a bright application prospect in practice.
-
Key words:
- alternating current electric field /
- cadmium /
- willow /
- photosyhthesis /
- soil /
- remediation
-
[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5):10-11. Ministry of environmental protection, ministry of land and resources. Survey bulletin on soil pollution in China[J]. China Environmental Protection Industry, 2014, 36(5):10-11(in Chinese).
[2] 周明冬, 秦晓辉, 候洪, 等. 农田土壤重金属的危害及防控措施[J]. 环境与可持续发展, 2014, 39(2):57-58. ZHOU M D, QIN X H, HOU H, et al. Prevention and control measures and damage of heavy metals in farmland soil[J]. Environment and Sustainable Development, 2014, 39(2):57-58(in Chinese).
[3] SARKAR A, RAVINDRAN G, KRISHNAMURTHY V. A brief review on the effect of cadmium toxicity:From cellular to organ level[J]. International Journal of Bio-Technology and Research, 2013, 3(1):17-36. [4] 赵玉林, 王晓, 武倩倩. 我国土壤重金属污染现状与治理方法[J]. 中国资源综合利用, 2014, 32(3):55-57. ZHAO Y L, WANG X, WU Q Q. Analysis of the status and the treatment methods of heavy metal contaminated soil in China[J]. China Resources Comprehensive Utilization, 2014, 32(3):55-57(in Chinese).
[5] 赵鹏雷, 毕然. 土壤重金属污染的电动力学联合植物修复技术[J]. 科学技术创新, 2012, 19(10):43-44. ZHANG P L, BI R. Electrokinetic combined phytoremediation technology for soil heavy metal pollution[J]. Science and Technology Innovation, 2012, 19(10):43-44(in Chinese).
[6] ABOUGHALMA H, BI R, SCHLAAK M. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants.[J]. Environmental Letters, 2008, 43(8):926-933. [7] 肖文丹, 叶雪珠, 徐海舟,等. 直流电场与添加剂强化东南景天修复镉污染土壤[J]. 土壤学报, 2017, 54(4):927-937. XIAO W D, YE X Z, XU H Z, et al. Intensification of phytoremediation of Cd contaminated soil with direct current field and soil amendments in addition to hyperaccumulator Sedum Alfredii[J]. Acta Pedologica Sinica, 2017, 54(4):927-937(in Chinese).
[8] LU P, FENG Q, MENG Q, et al. Electrokinetic remediation of chromium- and cadmium-contaminated soil from abandoned industrial site[J]. Separation & Purification Technology, 2012, 98(4):216-220. [9] PAZOS M, SANROMÁN M A, CAMESELLE C. Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique[J]. Chemosphere, 2006, 6(5):817-822. [10] 仓龙, 周东美, 吴丹亚. 水平交换电场与EDDS螯合诱导植物联合修复Cu/Zn污染土壤[J]. 土壤学报, 2009, 46(4):729-735. CHANG L, ZHOU D M, WU D Y. Effects of horizontal exchange electric field and EDDS application on ryegrass uptake of copper/zine and soil characteristics[J]. Acta Pedologica Sinica, 2009, 46(4):729-735(in Chinese).
[11] IWATA S, OKUMURA T, MURAMOTO Y, et al. Influence of A.C. electric field on plant growth[J]. IEEE, 2011, 179-182. [12] COSTANZO E. The influence of an electric field on the growth of soy seedlings[J]. Journal of electrostatics, 2008, 66(7):417-420. [13] BI R, SCHLAAK M, SIEFERT E, et al. Alternating current electrical field effects on lettuce (Lactuca sativa) growing in hydroponic culture with and without cadmium contamination[J]. Journal of Applied Electrochemistry, 2010, 40(6):1217-1223. [14] 赵凤亮, 杨卫东. 柳树(Salix spp.)在污染环境修复中的应用[J]. 浙江农业学报, 2017, 29(2):300-306. ZHAO F L, YANG W D. Review on application of willows (Salix spp.) in remediation of contaminated environment[J]. Acta Agriculturae Zhejiangensis, 2017, 29(2):300-306(in Chinese).
[15] TOZSÉR DÁVID, MAGURA T, SIMON E. Heavy metal uptake by plant parts of willow species:A meta-analysis[J]. Journal of Hazardous Materials, 2017, 336:101-109. [16] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000. LU R K. Analytical methods of soil and agricultural chemistry[M]. Beijing:China Agricultural Science and Technology Press, 2000(in Chinese). [17] WEI S H, ZHOU Q X, KOVL P V. Flowering stage characteristics of cadmium hyperaccumulator solanum nigrum L. and their significance to phytoremediation[J]. Sci.Tot. Environ., 2006, 369:441-446. [18] 马建伟, 王慧, 李瑞瑞. 电动力学-竹炭吸附联合修复工艺对高岭土中镉的去除[J]. 环境化学, 2015, 26(5):75-78. MA J W, WANG H, LI R R. Removal of cadmium in kaolin by electrokinetics-bamboo charcoal adsorption[J]. Environmental Chemistry, 2015, 26(5):75-78(in Chinese).
[19] 罗启仕, 张锡辉, 王慧, 等. 非均匀电动力学修复技术对土壤性质的影响[J]. 环境工程学报, 2004, 5(4):40-45. LUO Q S,ZHANG X H,WANG H, et al. Influence of non-uniform electrokinetic remediation technology on soil properties[J]. Techniques and Equipment for Environmental Pollution Control, 2004, 5(4):40-45(in Chinese).
[20] 温尚斌, 马福荣, 许守民, 等. 高压静电场促进植物吸收离子机理的初步探讨[J]. 生物化学与生物物理进展, 1995, 22(4):377-379. WENG S B, MA F R, XU S M, et al. The meehanism of ion absorption stimulated by the high voltage eleetrostatie field[J]. Prog. Biochem. Biophys., 1995, 22(4):377-379(in Chinese).
[21] 聂斌. 外加直流电场对植物吸收镉的影响研究[D]. 重庆:重庆大学, 2015. NIE B. The study of influence of direct current electrical fields on phytoremediation of Cd[D]. Chongqing:Chongqing University, 2015(in Chinese). [22] CHO M R, THATTE H S, SILVIA M T, et al. Transmembrane calcium influx induced by ac electric fields[J]. Faseb Journal, 1999, 13(6):83-677. [23] BI R, SCHLAAK M, SIEFERT E, et al. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum)[J]. Chemosphere, 2011, 83(3):318-326. [24] 李兴财. 风沙静电场对植物茎秆液流传输过程影响的理论分析[J]. 中国沙漠, 2013, 33(6):1731-1734. LI X C. A theoretical analysis of the effect of wind-blown sand electrostatic field on vegetation physiological processes[J]. Journal of Desert Research, 2013, 33(6):1731-1734(in Chinese).
[25] 那日, 冯璐. 我国静电生物学效应机理研究新进展[J]. 物理, 2003, 32(2):87-93. NA R, FENG L. Mechanism of the biological effects of electrostatics[J]. Physics, 2003, 32(2):87-93(in Chinese).
[26] 钱永强, 周晓星, 韩蕾, 等. 3种柳树叶片PSⅡ叶绿素荧光参数对Cd2+胁迫的光响应[J]. 北京林业大学学报, 2011, 33(6):8-14. QIAN Y Q, ZHOU X X, HAN L, et al. Rapid light-response curves of PSⅡ chlorophyll fluorescence parameters in the leaves of Salix babylonica, Salix ‘J172’ and Salix leucopithecia to Cd2+stress[J]. Journal of Beijing Forestry University, 2011, 33(6):8-14(in Chinese).
[27] OLLE BJÖRKMAN, DEMMIG B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins[J]. Planta, 1987, 170(4):489-504. [28] 朱世秋, 张琳雪, 陈周, 等. 高压电场对植物电特性的影响及促进光合作用的室内试验[J]. 农业工程学报, 2016, 32(17):168-173. ZHU S Q, ZHANG L X, CHEN Z, et al. Laboratory test on effects of high voltage electricity on electrostatic properties and promoting photosynthesis of plants[J]. Transactions of the Chinese society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17):168-173(in Chinese).
[29] 张守仁.叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4):444-448. ZHANG S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chinese Bulletin of Botany, 1999, 16(4):444-448(in Chinese).
[30] 万雪琴, 张帆, 夏新莉, 等. 镉处理对杨树光合作用及叶绿素荧光参数的影响[J]. 林业科学, 2008, 44(6):73-78. WAN X Q, ZHANG F Xia X L, et al. Effects of cadmium on photosynthesis and chlorophyll fluorescence parameters of solution-cultured poplar plants[J]. Scientia Silvae Sinicae, 2008, 44(6):73-78(in Chinese).
[31] 朱剑昀, 吴沿友, 李美清. 高压静电场对黄瓜幼苗叶绿素荧光的影响[J]. 农机化研究, 2015, 36(3):195-198. ZHU J Y, WU Y Y, Li M Q. Effects of applied HVEF on chlorophyll fluorescence parameters of cucumber seedlings[J]. Journal of App Mechanization Research, 2015, 36(3):195-198(in Chinese).
[32] 何俊瑜, 王阳阳, 任艳芳, 等. 镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响[J]. 生态环境学报, 2009, 18(5):1863-1868. HE J Y, WANG Y Y, REN Y F, et al. Effect of cadmium on root morphology and physiological characteristics of rice seedlings[J]. Ecology and Environmental Sciences, 2009, 18(5):1863-1868(in Chinese).
[33] 李亚林, 刘蕾, 段万超, 等. 电动修复技术对土壤中镉迁移的影响[J]. 环境工程学报, 2016, 10(10):6021-6027. LI Y L, LIU L, DUAN W C, et al. Effect of cadmium migration in contaminated soil by electrokinetics remediation[J]. Chinese Journal of Environmental Engineering, 2016, 10(10):6021-6027(in Chinese).
[34] 王学华, 戴力. 作物根系镉滞留作用及其生理生化机制[J]. 中国农业科学, 2016, 49(22):4323-4341. WANG X H, DAI L. Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots[J]. Scientia Agricultura Sinica, 2016, 49(22):4323-4341(in Chinese).
计量
- 文章访问数: 1059
- HTML全文浏览数: 1059
- PDF下载数: 37
- 施引文献: 0