几种含水介质中过硫酸钠去除苯系物/乙醇的效果和影响

孟伟, 蒋亚萍, 陈余道, 吴圣华, 韦延梅, 韦俊宏. 几种含水介质中过硫酸钠去除苯系物/乙醇的效果和影响[J]. 环境化学, 2019, (10): 2187-2194. doi: 10.7524/j.issn.0254-6108.2018112804
引用本文: 孟伟, 蒋亚萍, 陈余道, 吴圣华, 韦延梅, 韦俊宏. 几种含水介质中过硫酸钠去除苯系物/乙醇的效果和影响[J]. 环境化学, 2019, (10): 2187-2194. doi: 10.7524/j.issn.0254-6108.2018112804
MENG Wei, JIANG Yaping, CHEN Yudao, WU Shenghua, WEI Yanmei, WEI Junhong. Effects of sodium persulfate on benzene series/ ethanol removal in several aquifer media[J]. Environmental Chemistry, 2019, (10): 2187-2194. doi: 10.7524/j.issn.0254-6108.2018112804
Citation: MENG Wei, JIANG Yaping, CHEN Yudao, WU Shenghua, WEI Yanmei, WEI Junhong. Effects of sodium persulfate on benzene series/ ethanol removal in several aquifer media[J]. Environmental Chemistry, 2019, (10): 2187-2194. doi: 10.7524/j.issn.0254-6108.2018112804

几种含水介质中过硫酸钠去除苯系物/乙醇的效果和影响

    通讯作者: 陈余道, E-mail: cyd0056@vip.sina.com
  • 基金项目:

    国家自然科学基金(41172229,41362012)资助.

Effects of sodium persulfate on benzene series/ ethanol removal in several aquifer media

    Corresponding author: CHEN Yudao, cyd0056@vip.sina.com
  • Fund Project: Supported by the National Natural Science Foundation of China (41172229,41362012).
  • 摘要: 为探究含水介质中过硫酸钠去除乙醇汽油主要组分苯系物(苯、甲苯、乙苯和二甲苯简称BTEX)和乙醇的效果,选用石灰土、玄武岩风化土、花岗岩风化土、白云石、河砂等5种不同特性的介质,在室温下开展批实验研究.结果表明,在自然条件下,乙醇的降解速率由大到小顺序为玄武岩风化土 > 石灰土 > 河砂 > 花岗岩风化土 > 白云石,乙醇容易被微生物降解且会阻碍BTEX的微生物降解;在单纯的化学氧化条件(灭菌)下,BTEX比乙醇更容易被过硫酸钠氧化去除.其中,石灰土和玄武岩风化土BTEX去除率分别为94.2%和97.6%,乙醇去除率分别为16.9%和37.0%;河砂、花岗岩风化土及白云石BTEX的去除率均大于99%,乙醇去除率在67.4%—73.6%之间.在未灭菌条件下,过硫酸钠化学氧化显著抑制玄武岩风化、花岗岩风化土、河砂中固有的微生物作用,但对石灰土介质的影响较小.介质固有的有机质以及过硫酸钠引起的pH降低,都会影响过硫酸钠对污染物的去除,而介质中铁氧化物的作用需要进一步评价.
  • 加载中
  • [1] 朱昌海,文翎.价格杠杆可助推乙醇汽油推广[J].中国石油企业,2017,(11):78. ZHU C H, WEN L. Price leverage promotes the promotion of ethanol gasoline[J]. China Petroleum Enterprise, 2017(11

    ):78(in Chinese).

    [2] 赵一,蓝芙宁,覃星铭,等.乙醇影响下汽油污染物在不同形态土壤有机质上的吸附[J].环境化学,2017,36(3):557-563.

    ZHAO Y, LAN F N, QIN X M, et al. Influence of ethanol on the adsorption of gasoline components on different soil organic matter forms[J]. Environmental Chemistry, 2017, 36(3):557-563(in Chinese).

    [3] VILELA L S, TOLEDO D R, RUBINI A L, et al. Ethanol content in different gasohol blend spills influences the decision-making on remediation technologies.[J]. Journal of Environmental Management, 2018, 212(212):8-16.
    [4] TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate:A review[J]. Critical Reviews in Environmental Science&Technology, 2010, 40(1):55-91.
    [5] 吴昊,孙丽娜,王辉,等.活化过硫酸钠原位修复石油类污染土壤研究进展[J].环境化学,2015,34(11):2085-2095.

    WU H, SUN L N, WANG H, et al. Persulfate In situ remediation of petroleum hydrocarbon contaminated soil[J]. Environmental Chemistry, 2015, 34(11):2085-2095(in Chinese).

    [6] WACŁAWEK S, LUTZE H V, GRVBEL K, et al. Chemistry of persulfates in water and wastewater treatment:A review[J]. Chemical Engineering Journal, 2017, 330:44-62.
    [7] 阮晓昕,吕树光,缪周伟,等.磁铁矿活化过硫酸钠降解泥浆体系中的三氯乙烯[J].环境科学学报,2014,34(6):1489-1496.

    RUN X X, Lü S G, MIAO Z W, et al. Trichloroethylene degradation in soil slurry system by magnetite activated persulfate oxidation[J]. Acta Scientiae Circumstantiae, 2014, 34(6):1489-1496(in Chinese).

    [8] LIU H, BRUTON T A, LI W, et al. Oxidation of benzene by persulfate in the presence of Fe (III)-and Mn (IV)-containing oxides:stoichiometric efficiency and transformation products[J]. Environmental Science&Technology, 2016, 50(2):890-898.
    [9] SATAPANAJARU T, CHOKEJAROENRAT C, SAKULTHAEW C, et al. Remediation and restoration of petroleum hydrocarbon containing alcohol-contaminated Soil by persulfate oxidation activated with soil minerals[J]. Water, Air,&Soil Pollution, 2017, 228(9):345.
    [10] ANDRADE L N, ARAUJO S F, MATOS A T, et al. Performance of different oxidants in the presence of oxisol:remediation of groundwater contaminated by gasoline/ethanol blend[J]. Chemical Engineering Journal, 2017, 308:428-437.
    [11] 潘勇军,陈余道,蒋亚萍,等.岩溶地下河入口洞穴固结土对BTEX吸附-解吸研究[J].环境科学与技术,2016,39(11):52-57.

    PAN Y J, CHEN Y D, JIANG Y P, et al. Adsorption/desorption of BTEX by consolidated soil collected from a karst underground river cave[J]. Environmental Science&Technology, 2016, 39(11):52-57(in Chinese).

    [12] 梁月阐.影响高压蒸汽灭菌效果原因分析[J].医药前沿,2018,8(1):369-370.

    LIANG Y C. Analysis of the reasons affecting the sterilization effect of high pressure steam[J]. Journal of Frontiers of Medicine, 2018, 8(1):369-370(in Chinese).

    [13] 童奇玲,蒋亚萍,陈余道.运用批实验研究溶解氧对米酒去除硝酸盐的影响[J].环境工程,2017,35(10):44-49.

    TONG Q L, JIANG Y P, CHEN Y D. Batch experiments for the effect of dissolved oxygen on nitrate removal with rice wine[J]. Environmental Engineering, 2017, 35(10):44-49(in Chinese).

    [14] LIANG C, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9):1540-1543.
    [15] BEYLERIAN N M, KHACHATRIAN A G. The mechanism of the oxidation of alcohols and aldehydes with peroxydisulfate ion[J]. Chemischer Informationsdienst, 1985, 16(14):1937-1941.
    [16] 刘衡锡,张乃东,朱正江.硫酸自由基在水处理中的反应特性[J].科学通报,2012,57(36):3493-3499.

    LIU H X, ZHANG N D, ZHU Z J. Response characteristics of sulfate radicals in water treatment[J]. Chinese Science Bulletin, 2012, 57(36):3493-3499(in Chinese).

    [17] SRA K S, THOMSON N R, BARKER J F. Persulfate treatment of dissolved gasoline compounds[J]. Journal of Hazardous Toxic&Radioactive Waste, 2013, 17(1):9-15.
    [18] LIU J, LIU Z, ZHANG F, et al. Thermally activated persulfate oxidation of NAPL chlorinated organic compounds:Effect of soil composition on oxidant demand in different soil-persulfate systems[J]. Water Science&Technology, 2017, 75(8):1794-1803.
    [19] TEEL A L, AHMAD M, WATTS R J. Persulfate activation by naturally occurring trace minerals[J]. Journal of Hazardous Materials, 2011, 196(1):153-159.
    [20] BACIOCCHI R, D"APRILE L, INNOCENTI I, et al. Development of technical guidelines for the application of in-situ chemical oxidation to groundwater remediation[J]. Journal of Cleaner Production, 2014, 77:47-55.
    [21] MA J, YANG Y, JIANG X. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water[J]. Chemosphere, 2018, 190:296-306.
    [22] 黄传琴,熊娟,常明慧,等.土壤腐殖酸与碳酸盐相互作用过程研究[J].华中农业大学学报,2018,37(6):58-65.

    HUANG C C,XIONG J,CHANG M H, et al. Interaction process between soil humic substance and carbonate[J]. Journal of Huazhong Agricultural University, 2018, 37(6):58-65(in Chinese).

    [23] IOANNIDI A, FRONTISTIS Z, MANTZAVINOS D. Destruction of propyl paraben by persulfate activated with UV-A light emitting diodes[J]. Journal of Environmental Chemical Engineering, 2018, 6(2):2992-2997.
    [24] GUPTA S S, GUPTA Y K. Hydrogen ion dependence of the oxidation of iron (II) with peroxydisulfate in acid perchlorate solutions[J]. Cheminform, 1981, 12(17):454-457.
    [25] HOUSE D A. Kinetics and mechanism of oxidation by peroxydisulfate[J]. Chemical Reviews, 1961, 62(3):185-203.
    [26] CHEN K F, CHANG Y C, CHIOU W T. Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community:A comparison study[J]. Journal of Chemical Technology&Biotechnology, 2016, 91(6):1877-1888.
    [27] BVYVKSÖNMEZ F, HESS T F, CRAWFORD R L, et al. Toxic effects of modified fenton reactions on, xanthobacter flavus FB71[J]. Applied&Environmental Microbiology, 1998, 64(10):3459-3764.
    [28] KAKOSOVÁ E, HRABÁK P, CERNÍK M, et al. Effect of various chemical oxidation agents on soil microbial communities[J]. Chemical Engineering Journal, 2017, 314:257-265.
  • 加载中
计量
  • 文章访问数:  1364
  • HTML全文浏览数:  1364
  • PDF下载数:  32
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-28

几种含水介质中过硫酸钠去除苯系物/乙醇的效果和影响

    通讯作者: 陈余道, E-mail: cyd0056@vip.sina.com
  • 桂林理工大学环境科学与工程学院, 桂林, 541006
基金项目:

国家自然科学基金(41172229,41362012)资助.

摘要: 为探究含水介质中过硫酸钠去除乙醇汽油主要组分苯系物(苯、甲苯、乙苯和二甲苯简称BTEX)和乙醇的效果,选用石灰土、玄武岩风化土、花岗岩风化土、白云石、河砂等5种不同特性的介质,在室温下开展批实验研究.结果表明,在自然条件下,乙醇的降解速率由大到小顺序为玄武岩风化土 > 石灰土 > 河砂 > 花岗岩风化土 > 白云石,乙醇容易被微生物降解且会阻碍BTEX的微生物降解;在单纯的化学氧化条件(灭菌)下,BTEX比乙醇更容易被过硫酸钠氧化去除.其中,石灰土和玄武岩风化土BTEX去除率分别为94.2%和97.6%,乙醇去除率分别为16.9%和37.0%;河砂、花岗岩风化土及白云石BTEX的去除率均大于99%,乙醇去除率在67.4%—73.6%之间.在未灭菌条件下,过硫酸钠化学氧化显著抑制玄武岩风化、花岗岩风化土、河砂中固有的微生物作用,但对石灰土介质的影响较小.介质固有的有机质以及过硫酸钠引起的pH降低,都会影响过硫酸钠对污染物的去除,而介质中铁氧化物的作用需要进一步评价.

English Abstract

参考文献 (28)

目录

/

返回文章
返回