桂林市大气降水的化学组成特征及来源分析
Characteristics and source analysis of chemical composition of atmospheric precipitation in Guilin City, Southwest China
-
摘要: 为揭示桂林市大气降水的组成成分变化特征和来源,于2015年1—12月期间采集了桂林市大气降水样品,分析其中pH、电导率、主要阴阳离子(K+、Na+、Ca2+、Mg2+、NH4+、SO42-、NO3-、F-、Cl-)及重金属元素(As、Cr、Hg、Zn、Cu、Pb)浓度的季节变化特征及湿沉降通量.研究结果显示,桂林市大气降水pH值分布范围介于4.13—7.37之间,其中pH值小于酸雨临界值5.6的占48.0%,表明桂林市降雨存在一定的酸化现象.电导率(EC)变化介于4.53—128.10 μS·cm-1之间,雨量加权平均值为16.44 μS·cm-1.阴离子以SO42-和NO3-为主,雨量加权平均含量分别为94.50 μeq·L-1、30.48 μeq·L-1,占阴离子总量的65.28%和21.06%,其次为Cl-,阳离子以Ca2+为主,雨量加权平均含量为97.67 μeq·L-1,占阳离子总量的58.76%,其次为NH4+,占阳离子总量的19.10%.SO42-/NO3-平均值为2.45,大气降水属于硫酸-硝酸混合型,具有逐步向硝酸型转变的趋势.阴阳离子三角图和pearson相关性分析表明,Ca2+和Mg2+主要来自地壳源和人为源,Ca2+对致酸阴离子NO3-、SO42-的中和作用大于NH4+,桂林降水中可能存在以CaSO4和Ca (NO3)2为主的化学物质,Na+主要来源于海洋输送,K+则来源于人类活动.溶解态重金属元素的平均浓度为127.4 μg·L-1(0.349—443.8 μg·L-1),重金属湿沉降通量平均值为12.193 mg·(m2·a)-1,其中Zn、Cu的年沉降通量较高,分别占总沉降通量的59.72%和28.80%.Abstract: This study aimed to identify the sources and the variation of chemical composition of atmospheric precipitation in Guilin City. Rainwater samples were collected from January 2015 to December 2015. We then analyzed their pH, electrical conductivity, seasonal variation of concentrations and wet deposition fluxes of major ions (SO42-, NO3-, F-, Cl-, NH4+, Ca2+, Mg2+, Na+, K+) and metal elements (As, Cr, Hg, Zn, Cu, Pb). Results showed that the pH values of all samples ranged from 4.13 to 7.37, in which the samples with pH below 5.6 accounted for 48%. This indicates that the precipitation of Guilin City has been acidified to some extent. The electrical conductivity ranged from 4.53 μS·cm-1 to 128.10 μS·cm-1 with the volume-weighted mean of 16.44 μS·cm-1. SO42- and NO3- were the dominant anions in the precipitation with concentrations (volume-weighted mean) of 94.50 μeq·L-1 and 30.48 μeq·L-1, which account for 65.28% and 21.06% of the anions, respectively, followed by Cl-. Meanwhile, Ca2+ was the dominant cation with concentration of 97.67 μeq·L-1, which account for 58.76% of the cations. NH4+ was the next one accounting for 19.10%. The mean of the SO42-/NO3- ratio was 2.45, suggesting that the precipitation of Guilin City belongs to both sulfuric and nitric acid, and may gradually evolve from a mixed type acid to nitric acid type. Cation and anion triangle analysis and pearson correlation analysis suggest that Ca2+ and Mg2+ mainly originated from both crustal and anthropogenic sources. Comparing to NH4+, Ca2+ is the main neutralization component of rain, indicating that CaSO4 and Ca(NO3)2 might be the main chemical compositions in the precipitation. Furthermore, Na+ is derived from ocean transportation, while K+ is mainly derived from anthropogenic sources. The average concentration of the dissolved heavy metals was 127.40 μg·L-1 (ranging from 0.349 to 443.8 μg·L-1), Furthermore, the average wet deposition flux was 12.193 mg·(m2·a)-1. Specifically, the annual wet deposition fluxes of Zn and Cu are higher than other heavy metals, which account for 59.72% and 28.80%, respectively. These results confirm the sources and chemical composition of the atmospheric precipitation in Guilin City.
-
Key words:
- Guilin City /
- atmospheric precipitation /
- acid rain /
- ions source /
- heavy metal
-
-
[1] 王璟.大气降水中离子化学特征及来源分析[J].环境科学与管理,2012,37(3):73-80. WANG J.Chemical characteristics of ions in atmospheric precipitation and their source analysis[J].Environmental Science and Management, 2012,37(3):73-80(in Chinese).
[2] DEBOUDT K, FLAMENT P, BERTHO M L. Cd, Pb and Zn concentrations in atmospheric wet deposition at a coastal station in Western Europe[J]. Water Air and Soil Pollution, 2004, 151:335-359. [3] NAOYUKI Y S, HIROYUKI S, TSUYOSHI O. et al. Mapping the relative risk of surface water acidification based on cumulative acid deposition over the past 25 years in Japan[J]. Journal of Forest Research, 2016, 21:115-124. [4] O.CONNAN A D. MARO A D. Hébert.et al. Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France[J]. Atmospheric Environment, 2013,67:394-403. [5] HUANG K, ZHUANG G S, XU C, et al. The chemistry of the severe acidic precipitation in Shanghai, China[J]. Atmospheric Research, 2008, 89:149-160. [6] CAO Y Z, WANG S Y, ZHANG G, et al. Chemical characteristics of wet precipitation at an urban site of Guangzhou South China[J]. Atmospheric Research,2009, 94(3):462-469. [7] 黎杉,王峰.上海青浦地区大气降水的化学特征[J].中国环境监测,2016, 32(5):24-29. LI B, WANG F.Chemical characteristics of atmospheric precipitation in Qingpu district of Shanghai[J]. Environmental Monitoring in China, 2016, 32(5):24-29(in Chinese).
[8] 牛彧文,何凌燕,胡敏. 深圳大气降水的化学组成特征[J]. 环境科学,2008, 29(4):1014-1019. NIU Y W, HE L Y, HU M. Chemical characteristics of atmospheric precipitation in Shenzhen[J]. Environmental Science, 2008, 29(4):1014-1019(in Chinese).
[9] 余波,张伟,唐访良.杭州市2006-2015年大气降水酸度特征及化学组成分析[J]. 环境科学与技术, 2018, 41(4):91-95. YU B, ZHANG W, TANG F L. Atmospheric precipitation of Hangzhou City during 2006-2015:Acidity characteristics and chemical composition[J]. Environmental Science & Technology,2018, 41(4):91-95(in Chinese).
[10] 郭雅思,于奭,黎永珊,等.桂林市酸雨变化特征及来源分析[J]. 环境科学,2016, 37(8):2897-2905. GUO Y S, YU S, LI Y S, et al.Chemical characteristics and source of acid precipitation in Guilin[J]. Environment Science, 2016, 37(8):2897-2905(in Chinese).
[11] 于奭,何师意,杨慧,等.酸雨对广西典型碳酸盐岩地区碳源效应研究[J].地球与环境,2012, 40(1):44-49. YU S, HE S Y, YANG H. Research on carbon source effect of acid rain in a typical carbonate rock area, Guangxi[J]. Earth and Environment, 2012, 40(1):44-49(in Chinese).
[12] 张红波,于奭,何师意,等.桂林岩溶区大气降水的化学特征分析[J].中国岩溶,2012, 31(3):289-295. ZHANG H B, YU S, HE S Y, et al. Analysis on the chemical characteristics of the atmospheric precipitation in Guilin[J]. Carsologica Sinica, 2012, 31(3):289-295(in Chinese).
[13] 钱建平,张力,迟占东,等.桂林市酸雨的时空分布及汞污染[J].地球科学进展,2012, 27(增刊):390-392. QIAN J P, ZHANG L, CHI Z D, et al.Time-space distrobution and mercury pollution of the acid rain in Guilin[J].Advance in Earth Science, 2012 , 27(suppl):390-392(in Chinese).
[14] 程新金,黄美元. 降水化学特性的一种分类分析方法[J]. 气候与环境研究,1998, 3(1):82-88. CHENG X J, HUANG M Y. A classification method to analyze the chemical characteristics of precipitation[J].Climatic and Environmental Research, 1998, 3(1):82-88(in Chinese).
[15] 张近扬,黄石磊,黄跃武,等.基于气流轨迹聚类分析方法浅析桂林市酸雨来源[J]. 环境监测管理与技术,2015, 27(2):22-25. ZHANG J Y, HUANG S L, HUANG Y W. et al. Study on the source of acid rain in Guilin based on the clustering method of backward trajectory[J]. Environmental Monitoring Management & Technology, 2015, 27(2):22-25(in Chinese).
[16] LEE B K, HONG S H, LEE D S. Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula[J]. Atmospheric Environment, 2000, 34(4):563-575. [17] HU G P, BALASUBR A R, WU C D. Chemical characterization of rainwater at Singapore[J]. Chemosphere, 2003, 51(8):747-755. [18] 汤洁,薛虎圣,于晓岚,等.瓦里关山降水化学特征的初步分析[J]. 环境科学学报,2000,20(4):420-425. TANG J, XUE H S, YU X L, et al.The preliminary study on chemical characteristics of precipitation at Mt. Waliguan[J]. Acta Scientiae Circumstantiae, 2000, 20(4):420-425(in Chinese).
[19] LI Y, CHENG H B, LIN W L, et al. Chemical characteristics of precipitation at three Chinese regional background stations from 2006 to 2007[J]. Atmospheric Research, 2010, 96:173-183. [20] AAS W, SHAO M, JIN L, et al. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China, 2001-2003[J]. Atmospheric Environment, 2007,41(8):1706-1716. [21] 魏宸,黄虹,邹长伟,等.南昌市新城区大气降水化学特征与主要成分来源解析[J]. 环境科学研究, 2016, 29(11):1582-1589. WEI C, HUANG H, ZOU C W. et al. Chemical characteristics and main sources of atmospheric precipitation in new urban district of Nanchang City[J].Research of Environmental Sciences, 2016, 29(11):1582-1589(in Chinese).
[22] SIMONEIT B R, SCHAUER J J, NOLTE C, et al. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles[J]. Atmospheric Environment, 1999, 33(2):173-182. [23] 唐喜斌,黄成,楼晟荣,等.长三角地区秸秆燃烧排放因子与颗粒物成分谱研究[J].环境科学, 2014, 35(5):1623-1632. TANG X B, HUANG C, LOU S R, et al.Emission factors and PM chemical composition study of biomass burning in the Yangtze river delta region[J]. Environmental Science, 2014, 35(5):1623-1632(in Chinese).
[24] LI X H, WANG S X, DUAN L, et al. Particulate and trace gas emissions from open burning of wheat straw and corn stover in China[J]. Environmental Science&Technology, 2007, 41(17):6052-6058. [25] XIAO H W, XIAO H Y, LUO L, et al. Atmospheric aerosol compositions over the South China Sea:Temporal variability and source apportionment[J].Atmospheric Chemistry&Physics, 2017, 17(4):1-39. [26] 孙启斌,肖红伟,肖化云,等.南昌市大气降水化学特征及来源分析[J]. 环境科学研究,2017,30(12):1841-1848. SUN Q B, XIAO H W, XIAO H Y, et al. Chemical characteristics and source apportionment of atmospheric precipitation in Nanchang City[J]. Research of Environmental Sciences, 2017, 30(12):1841-1848(in Chinese).
[27] XIAO H W, XIAO H Y, LONG A M, et al. Chemical composition and source apportionment of rainwater at Guiyang,SW China[J]. Journal of Atmospheric Chemistry, 2013, 70(3):269-281. [28] BASAK B, ALAGHA O. The chemical composition of rainwater over Büyük ekmece lake, Istanbul[J]. Atmospheric Research, 2004, 71(4):275-288. [29] 白莉,王中良.西安地区大气降水化学组成特征与物源分析[J]. 地球与环境,2008, 36(4):289-297. BAI L, WANG Z L. Chemical composition and potentical sources of major ions in precipition in the Xi'an district, Shaan'Xi province[J]. Earth and Environment, 2008, 36(4):289-297(in Chinese).
[30] ZHOU X J, XU X D, YAN P, et al. Dynamic characteristics of spring sandstorms in 2000[J]. Science China Earth Science, 2002,32(4):921-930. [31] SUN J, ZHANG M, LIU T. 2001. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960-1999:Relations to sources area and climate[J]. Journal of Geophysical Research 2001, 106(10):325-10,333. [32] WANG Y, ZHUANG G, SUN Y, et al. Water-soluble part of the aerosols in the dust storm season-evidence of the mixing between mineral and pollution aerosols[J]. Atmospheric Environment, 2005, 39:7020-7029. [33] 唐喜斌.秸秆燃烧对灰霾天气的影响分析及其排放因子与颗粒物成分谱[D]. 上海:华东理工大学, 2014. TANG X B. Biomass buring impacts on the haze weather and its emission factors and PM chemical composition[D]. Shanghai:East china University of Science and Technology, 2014(in Chinese). [34] ZHU B Q, YANG X P, RIOUAL P, et al. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry, 2011, 26(8):1535-1548. [35] 沈照理,朱宛华.水文地球化学基础[M]. 北京:地质出版社,1993.83-91. [36] 张棕巍,胡恭任,于瑞莲,等.厦门市大气PM2.5中水溶性离子污染特征及来源解析[J]. 中国环境科学,2016, 36(7):1947-1954. ZHANG Z W, HU G R, YU R L, et al. Characteristics and sources apportionment of water-soluble ions in PM2.5 of Xiamen City, China[J]. China Environmental Science, 2016, 36(7):1947-1954(in Chinese).
[37] 杨复沫,贺克斌,雷宇,等. 2001-2003年间北京大气降水的化学特征[J].中国环境科学,2004, 24(5):538-541. YANG F M, HE K B, LEI Y. et al. Chemical characters of atmospheric precipitation in Beijing in years of 2001-2003[J]. China Environmental Science, 2004, 24(5):538-541(in Chinese).
[38] 孙韧,张文具,董海燕,等. 2001-2012年天津市大气降水特征及化学成分分析[J]. 环境污染与防治,2014, 36(8):53-58. SUN R, ZHANG W J, DONG H Y, et al. Atmospheric precipitation feature of Tianjin from 2001-2012 and its chemical components[J]. Environmental Pollution & Control, 2014, 36(8):53-58(in Chinese).
[39] 谭志农,袁修彬. 咸宁市区酸雨状况及其成因分析[J]. 环境科学与技术,2012, 35(12J):252-254. TANG Z N, YUAN X B. Analysis the status and causes of acid rain in urban of Xianning[J]. Environmental Science & Technology, 2012, 35(12J):252- 254(in Chinese).
[40] 赵晓韵,李金娟,孙哲,等.贵州典型酸雨城市大气降水化学组成特征[J]. 地球与环境,2014, 42(3):316-321. ZHAO X Y, LI J J, SUN Z, et al. Characteristics of chemical compositions of precipition in a typical acid-rain city in Guizhou province[J].Earth and Environment, 2014, 42(3):316-321(in Chinese).
[41] 艾东升.上海市大气降水化学组成特征及物源解析[D]. 上海:华东师范大学,2011. AI D S. Chemical characteristics of wet precipitation in shanghai and its source analysis[D]. Shanghai:East china Normal University,2014(in Chinese). [42] 桂林市统计局.桂林统计年鉴[J].北京:中国统计出版社,2014-2016. [43] 杨丽萍,陈发虎.兰州市大气降尘污染物来源研究[J].环境科学学报, 2002, 22(4):499-502. YANG L P, CHEN F H. Study on the source apportionment of atmospheric dust pollutants in Lanzhou[J]. Acta Scientiae Circumstantiae, 2002, 22(4):499-502(in Chinese).
[44] CONNAN A O, MARO D, HEBERT A D, et al.Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France[J].Atmospheric Research, 2013, 67:394-403. [45] 蒋冰艳,何龙,陈德华,等.深圳近海区域降水中重金属湿沉降通量及源解析[J]. 环境化学,2018,37(7):1460-1473. JIANG B Y, HE L, CHEN D H, et al. Wet deposition flux and sources of heavy metals in precipitation in the coastal area of Shenzhen[J]. Environmental Chemistry, 2018, 37(7):1460-1473(in Chinese).
[46] 彭玉龙,王永敏,覃蔡清,等. 重庆主城区降水中重金属的分布特征及其沉降量[J]. 环境科学, 2014,35(7):2490-2496. PENG Y L, WANG Y M, QIN C Q, et al. Concentrations and deposition fluxes of heavy metals in precipitation in core urban areas, Chongqing[J]. Environment Science, 2014, 35(7):2490-2496(in Chinese).
[47] KIM J E, HAN Y J, KIM P R, et al. Factors influencing atmospheric wet deposition of trace elements in rural Korea[J].Atmospheric Research, 2012, 116:185-194. [48] HU G P, BALASUB R, AMANIAN R. Wet deposition of trace metals in Singapore[J]. Water, Air, and Soil Pollution, 2003, 144:285-300. -

计量
- 文章访问数: 1470
- HTML全文浏览数: 1470
- PDF下载数: 104
- 施引文献: 0