城市和电子垃圾拆解区室内灰尘中溴代阻燃剂(BFRs)的浓度和生物有效性

郭惠莹, 郑晓波, 茹淑玲, 麦碧娴. 城市和电子垃圾拆解区室内灰尘中溴代阻燃剂(BFRs)的浓度和生物有效性[J]. 环境化学, 2020, (1): 220-228. doi: 10.7524/j.issn.0254-6108.2019020301
引用本文: 郭惠莹, 郑晓波, 茹淑玲, 麦碧娴. 城市和电子垃圾拆解区室内灰尘中溴代阻燃剂(BFRs)的浓度和生物有效性[J]. 环境化学, 2020, (1): 220-228. doi: 10.7524/j.issn.0254-6108.2019020301
GUO Huiying, ZHENG Xiaobo, RU Shuling, MAI Bixian. Concentrations and bioaccessibility of brominated flame retardants (BFRs) in indoor dust from a megacity and an e-waste recycling site[J]. Environmental Chemistry, 2020, (1): 220-228. doi: 10.7524/j.issn.0254-6108.2019020301
Citation: GUO Huiying, ZHENG Xiaobo, RU Shuling, MAI Bixian. Concentrations and bioaccessibility of brominated flame retardants (BFRs) in indoor dust from a megacity and an e-waste recycling site[J]. Environmental Chemistry, 2020, (1): 220-228. doi: 10.7524/j.issn.0254-6108.2019020301

城市和电子垃圾拆解区室内灰尘中溴代阻燃剂(BFRs)的浓度和生物有效性

    通讯作者: 郑晓波, E-mail: zhengxiaobo@scau.edu.cn
  • 基金项目:

    国家自然科学基金(41603085,41573088)和广东省自然科学基金(2016A030310440)资助.

Concentrations and bioaccessibility of brominated flame retardants (BFRs) in indoor dust from a megacity and an e-waste recycling site

    Corresponding author: ZHENG Xiaobo, zhengxiaobo@scau.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(41603085, 41573088) and Guangdong Natural Science Foundation (2016A030310440).
  • 摘要: 本文以广州市区和电子垃圾拆解区室内灰尘为研究对象,分析不同粒径(50—2000 μm)灰尘中溴代阻燃剂(brominated flame retardants,BFRs)的浓度、组成和生物有效性.广州市区灰尘中BFRs以十溴二苯乙烷(decabromodiphenyl ethane,DBDPE)(4930—7280 ng·g-1)为主,电子垃圾拆解区以十溴联苯醚(polybrominated diphenyl ether 209,BDE209)(5570—602600 ng·g-1)为主.对比研究结果发现,城市灰尘中BFRs的分布无粒径差异,而电子垃圾拆解区最细粒径灰尘中BFRs含量最高.广州市区灰尘中BFRs生物有效性随化合物的lg Kow增加而降低.电子垃圾拆解区灰尘生物有效性显著低于市区灰尘,表明在电子垃圾拆解区灰尘中电子垃圾碎片的存在很大程度上降低了BFRs的生物有效性.人体暴露评估结果显示,广州市区人体暴露风险低于电子垃圾拆解区暴露风险.
  • 加载中
  • [1] DE WIT C A. An overview of brominated flame retardants in the environment[J]. Chemosphere, 2002, 46(5):583-624.
    [2] COVACI A, HARRAD S, ABDALLAH M A, et al. Novel brominated flame retardants:A review of their analysis, environmental fate and behaviour[J]. Environment International, 2011, 37(2):532-536.
    [3] CAO Z, YU G, CHEN Y, et al. Mechanisms influencing the BFR distribution patterns in office dust and implications for estimating human exposure[J]. Journal of Hazardous Materials, 2013, 11(8):252-253.
    [4] WEBSTER T F, HARRAD S, MILLETTE J R, et al. Identifying transfer mechanisms and sources of decabromodiphenyl ether (BDE 209) in indoor environments using environmental forensic microscopy[J]. Environmental Science & Technology, 2009, 43(9):3067-3072.
    [5] HARRAD S, IBARRA C, DIAMOND M, et al. Polybrominated diphenyl ethers in domestic indoor dust from Canada, New Zealand, United Kingdom and United States[J]. Environment International, 2008, 34(2):232-238.
    [6] DIRTU A C, ALI N, VAN DEN EEDE N, et al. Country specific comparison for profile of chlorinated, brominated and phosphate organic contaminants in indoor dust. Case study for Eastern Romania, 2010[J]. Environment International, 2012, 49:1-8.
    [7] 张利飞, 黄业茹, 董亮. 多溴联苯醚在中国的污染现状研究进展[J]. 环境化学, 2010, 29(5):787-795.

    ZHANG L F, HUANG Y R, DONG L. Pollution of polybrominated diphenyl ethers in China[J]. Environmental Chemistry, 2010, 29(5):787-795(in Chinese).

    [8] LORBER M. Exposure of Americans to polybrominated diphenyl ethers[J]. Journal of Exposure Science and Environmental Epidemiology, 2008, 18(1):2-19.
    [9] WU N, HERRMANN T, PAEPKE O, et al. Human exposure to PBDEs:Associations of PBDE body burdens with food consumption and house dust concentrations[J]. Environmental Science & Technology, 2007, 41(5):1584-1589.
    [10] KARLSSON M, JULANDER A, VAN BAVEL B, et al. Levels of brominated flame retardants in blood in relation to levels in household air and dust[J]. Environment International, 2007, 33(1):62-69.
    [11] ALI N, VAN DEN EEDE N, DIRTU A C, et al. Assessment of human exposure to indoor organic contaminants via dust ingestion in Pakistan[J]. Indoor Air, 2012, 22(3):200-211.
    [12] YU Y, YANG D, WANG X, et al. Factors influencing on the bioaccessibility of polybrominated diphenyl ethers in size-specific dust from air conditioner filters[J]. Chemosphere, 2013, 93(10):2603-2611.
    [13] RUBY M V, LOWNEY Y W. Selective soil particle adherence to hands:Implications for understanding oral exposure to soil contaminants[J]. Environmental Science & Technology, 2012, 46(23):12759-12771.
    [14] WEI H, TURYK M, CALI S, et al. Particle size fractionation and human exposure of polybrominated diphenyl ethers in indoor dust from Chicago[J]. Journal of Environment Science Health Part A, 2009, 44(13):1353-1361.
    [15] CAO Z G, YU G, CHEN Y S, et al. Particle size:A missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust[J]. Environment International, 2012, 49:24-30.
    [16] ABDALLAH M A E, TILSTON E, HARRAD S, et al. In vitro assessment of the bioaccessibility of brominated flame retardants in indoor dust using a colon extended model of the human gastrointestinal tract[J]. Journal of Environmental Monitoring, 2012, 14(12):3276-3283.
    [17] DEAN J R, MA R. Approaches to assess the oral bioaccessibility of persistent organic pollutants:A critical review[J]. Chemosphere, 2007, 68(8):1399-1407.
    [18] TANG X Y, TANG L, ZHU Y G, et al. Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test[J]. Environmental Pollution, 2006, 140(2):279-285.
    [19] 胡庆亮, 黄宁宝, 王艳, 等. 模拟胃肠液用Tenax提取法测定多溴联苯醚的生物有效性[J]. 环境化学, 2014, 33(8):1253-1260.

    HU Q L, HUANG N B, WANG Y, et al. Determination of bioaccessibility of polybrominated diphenyl ethers using Tenax extraction in gastrointestinal solution[J]. Environmental Chemistry, 2014, 33(8):1253-1260(in Chinese).

    [20] ZHENG X, XU F, CHEN K, et al. Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China:Composition variations and implications for human exposure[J]. Environment International, 2015, 78:1-7.
    [21] WANG J, MA Y J, CHEN S J, et al. Brominated flame retardants in house dust from e-waste recycling and urban areas in South China:Implications on human exposure[J]. Environment International, 2010, 36(6):535-541.
    [22] ABBASI S, KESHAVARZI B, MOORE F, et al. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran[J]. Environmental Pollution, 2019, 244:153-164.
    [23] YU Y X, PANG Y P, LI C, et al. Concentrations and seasonal variations of polybrominated diphenyl ethers (PBDEs) in in- and out-house dust and human daily intake via dust ingestion corrected with bioaccessibility of PBDEs[J]. Environment International, 2012, 42:124-131.
    [24] FANG M, STAPLETON H M. Evaluating the bioaccessibility of flame retardants in house dust using an in vitro tenax bead-assisted sorptive physiologically based method[J]. Environmental Science & Technology, 2014, 48:13323-13330.
    [25] TILSTON E L, GIBSON G R, COLLINS C D. Colon extended physiologically based extraction test (CE-PBET) increases bioaccessibility of soil-bound PAH[J]. Environmental Science & Technology, 2011, 45(12):5301-5308.
    [26] ZHENG X B, WU J P, LUO X J, et al. Halogenated flame retardants in home-produced eggs from an electronic waste recycling region in South China:Levels, composition profiles, and human dietary exposure assessment[J]. Environment International, 2012, 45:122-128.
    [27] VAN DEN EEDE N, DIRTU A C, ALI N, et al. Multi-residue method for the determination of brominated and organophosphate flame retardants in indoor dust[J]. Talanta, 2012, 89:292-300.
    [28] CAO Z, XU F, COVACI A, et al. Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure[J]. Environmental Science & Technology, 2014, 48(15):8839-8846.
    [29] ALI N, HARRAD S, GOOSEY E, et al. "Novel" brominated flame retardants in Belgian and UK indoor dust:Implications for human exposure[J]. Chemosphere, 2011, 83(10):1360-1365.
    [30] HARRAD S, IBARRA C, ABDALLAH M A E, et al. Concentrations of brominated flame retardants in dust from United Kingdom cars, homes, and offices:Causes of variability and implications for human exposure[J]. Environment International, 2008, 34(8):1170-1175.
    [31] STAPLETON H M, DODDER N G, OFFENBERG J H, et al. Polybrominated diphenyl ethers in house dust and clothes dryer lint[J]. Environmental Science & Technology, 2005, 39(4):925-931.
    [32] 金漫彤,滕丹丹,郑艳霞,等. 杭州城区室内灰尘中多溴联苯醚的含量及人体暴露水平[J]. 环境科学, 2006, 37(11):4341-4348.

    JIN M T, TENG D D, ZHENG Y X, et al. PBDEs levels in house dust and human exposure to PBDEs via dust ingestion in Hangzhou[J]. Environmental Science, 2006, 37(11):4341-4348(in Chinese).

    [33] AL-OMRAN L S, HARRAD S. Polybrominated diphenyl ethers and "novel" brominated flame retardants in floor and elevated surface house dust from Iraq:Implications for human exposure assessment[J]. Emerging Contaminants, 2016, 2(1):7-13.
    [34] JIANG H, LIN Z, WU Y, et al. Daily intake of polybrominated diphenyl ethers via dust and diet from an e-waste recycling area in China[J]. Journal of Hazardous Materials, 2014, 276:35-42.
    [35] GAUTHIER L T, HEBERT C E, WESELOH D C, et al. Current-use flame retardants in the eggs of herring gulls (Larus argentatus) from the Laurentian Great Lakes[J]. Environmental Science & Technology, 2007, 41(13):4561-4567.
    [36] LEWIS R G, FORTUNE C R, WILLIS R D, et al. Distribution of pesticides and polycyclic aromatic hydrocarbons in house dust as a function of particle size[J]. Environmental Health Perspective, 1999, 107(9):721-726.
    [37] AL-OMRAN L S, HARRAD S. Distribution pattern of legacy and "novel" brominated flame retardants in different particle size fractions of indoor dust in Birmingham, United Kingdom[J]. Chemosphere, 2016, 157:124-131.
    [38] ZHU N Z, QI H, ZHANG F, et al. Concentration, sources and human exposure of polybrominated diphenyl ethers in indoor dust in Heilongjiang Province, China[J]. Bull Environ Contam Toxicol, 2013, 91(6):640-644.
    [39] SANDHOLM A, EMANUELSSON B M, WEHLER E K. Bioavailability and half-life of decabromodiphenyl ether (BDE-209) in rat[J]. Xenobiotica, 2003, 33(11):1149-1158.
    [40] HUWE J K, HAKK H, SMITH D J, et al. Comparative absorption and bioaccumulation of polybrominated diphenyl ethers following ingestion via dust and oil in male rats[J]. Environmental Science & Technology, 2008, 42(7):2694-2700.
    [41] GARCIA-ALCEGA S, RAUERT C, HARRAD S, et al. Does the source migration pathway of HBCDs to household dust influence their bio-accessibility?[J]. The Science of the Total Environment, 2016, 244(51):569-570.
    [42] DEHGHANI S, MOORE F, AKHBARIZADEH R. Microplastic pollution in deposited urban dust, Tehran Metropolis, Iran[J]. Environmental Science and Pollution Research, 2017, 24(25):20360-20371.
    [43] JONES-OTAZO H A, CLARKE J P, DIAMOND M L, et al. Is house dust the missing exposure pathway for PBDEs- An analysis of the urban fate and human exposure to PBDEs[J]. Environmental Science & Technology 2005, 39(14):5120-5130.
    [44] ALI N, EQANI S A, ISMAIL I M, et al. Brominated and organophosphate flame retardants in indoor dust of Jeddah, Kingdom of Saudi Arabia:Implications for human exposure[J]. The Science of the Total Environment, 2016, 269(77):569-570.
  • 加载中
计量
  • 文章访问数:  1015
  • HTML全文浏览数:  1015
  • PDF下载数:  41
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-02-03
  • 刊出日期:  2020-01-01

城市和电子垃圾拆解区室内灰尘中溴代阻燃剂(BFRs)的浓度和生物有效性

    通讯作者: 郑晓波, E-mail: zhengxiaobo@scau.edu.cn
  • 1. 中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广州, 510640;
  • 2. 中国科学院大学, 北京, 100049;
  • 3. 华南农业大学资源与环境学院, 广州, 510642
基金项目:

国家自然科学基金(41603085,41573088)和广东省自然科学基金(2016A030310440)资助.

摘要: 本文以广州市区和电子垃圾拆解区室内灰尘为研究对象,分析不同粒径(50—2000 μm)灰尘中溴代阻燃剂(brominated flame retardants,BFRs)的浓度、组成和生物有效性.广州市区灰尘中BFRs以十溴二苯乙烷(decabromodiphenyl ethane,DBDPE)(4930—7280 ng·g-1)为主,电子垃圾拆解区以十溴联苯醚(polybrominated diphenyl ether 209,BDE209)(5570—602600 ng·g-1)为主.对比研究结果发现,城市灰尘中BFRs的分布无粒径差异,而电子垃圾拆解区最细粒径灰尘中BFRs含量最高.广州市区灰尘中BFRs生物有效性随化合物的lg Kow增加而降低.电子垃圾拆解区灰尘生物有效性显著低于市区灰尘,表明在电子垃圾拆解区灰尘中电子垃圾碎片的存在很大程度上降低了BFRs的生物有效性.人体暴露评估结果显示,广州市区人体暴露风险低于电子垃圾拆解区暴露风险.

English Abstract

参考文献 (44)

目录

/

返回文章
返回