利用毒代动力学模型研究氟虫腈在夹杂带丝蚓体内的手性选择性积累过程

王顺慧, 李慧珍, 游静. 利用毒代动力学模型研究氟虫腈在夹杂带丝蚓体内的手性选择性积累过程[J]. 环境化学, 2020, (1): 12-18. doi: 10.7524/j.issn.0254-6108.2019012601
引用本文: 王顺慧, 李慧珍, 游静. 利用毒代动力学模型研究氟虫腈在夹杂带丝蚓体内的手性选择性积累过程[J]. 环境化学, 2020, (1): 12-18. doi: 10.7524/j.issn.0254-6108.2019012601
WANG Shunhui, LI Huizhen, YOU Jing. Enantioselective bioaccumulation of waterborne fipronil in Lumbriculus variegatus with toxicokinetic modeling[J]. Environmental Chemistry, 2020, (1): 12-18. doi: 10.7524/j.issn.0254-6108.2019012601
Citation: WANG Shunhui, LI Huizhen, YOU Jing. Enantioselective bioaccumulation of waterborne fipronil in Lumbriculus variegatus with toxicokinetic modeling[J]. Environmental Chemistry, 2020, (1): 12-18. doi: 10.7524/j.issn.0254-6108.2019012601

利用毒代动力学模型研究氟虫腈在夹杂带丝蚓体内的手性选择性积累过程

    通讯作者: 游静, E-mail: youjing@jnu.edu.cn
  • 基金项目:

    广东省自然科学基金(2017A030313065,2015A030310219,2016A030312009)资助.

Enantioselective bioaccumulation of waterborne fipronil in Lumbriculus variegatus with toxicokinetic modeling

    Corresponding author: YOU Jing, youjing@jnu.edu.cn
  • Fund Project: Supported by the Natural Science Foundation of Guangdong Province (2017A030313065, 2015A030310219, 2016A030312009).
  • 摘要: 农药的生物积累直接影响其毒性,但是手性农药在生物体内的选择性积累过程仍不明确.本文在恒定环境水浓度的条件下,开展手性农药氟虫腈的外消旋体及其对映体在底栖无脊椎动物夹杂带丝蚓体内的生物积累实验.在96 h和72 h的吸收和消除实验过程中,测定生物体内的氟虫腈的外消旋体和对映体浓度随时间的变化情况,构建毒代动力学模型,获取吸收和消除速率常数.结果表明夹杂带丝蚓对R-氟虫腈的生物浓缩因子(1981 L·kg-1脂肪)比对S-氟虫腈(1748 L·kg-1脂肪)更大.R-氟虫腈和S-氟虫腈的吸收速率常数相当,分别为311±11 L·kg-1脂肪·h-1和313±13 L·kg-1脂肪·h-1,而R-氟虫腈的消除速率常数小于S-氟虫腈,分别为0.157±0.006 h-1和0.179±0.008 h-1,因此相对较慢的消除是导致R-氟虫腈在夹杂带丝蚓体内更高生物积累的主要原因.研究说明毒代动力学参数可有效阐释手性外源物质在生物体内选择性积累的差异.
  • 加载中
  • [1] LIU W P, GAN J, SCHLENK D, et al. Enantioselectivity in environmental safety of current chiral insecticides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102:701-706.
    [2] GUNASEKARA A S, TRUONG T T, GOH K S, et al. Environmental fate and toxicology of fipronil[J]. Journal of Pesticide Science, 2007, 32:189-199.
    [3] WILSON W A, KONWICK B J, GARRISON A W, et al. Enantioselective chronic toxicity of fipronil to Ceriodaphnia Dubia[J]. Archives of Environmental Contamination and Toxicology, 2008, 54:36-43.
    [4] QU H, MA R X, LIU D H, et al. The toxicity, bioaccumulation, elimination, conversion of the enantiomers of fipronil in Anodonta woodiana[J]. Journal of Hazardous Materials, 2016, 312:169-174.
    [5] OVERMYER J P, ROUSE D R, AVANTS J K, et al. Toxicity of fipronil and its enantiomers to marine and freshwater non-targets[J]. Journal of Environmental Science and Health Part B, 2007, 42:471-480.
    [6] 刘维屏, 张颖. 手性农药毒性评价进展[J]. 浙江大学学报, 2012, 38(1):63-70.

    LIU W, ZHANG Y. Progress in potential toxicity of chiral pesticides[J]. Journal of Zhejiang University, 2012, 38(1):63-70(in Chinese).

    [7] ASHAUER R, ESCHER B I. Advantages of toxicokinetic and toxicodynamic modeling in aquatic ecotoxicology and risk assessment[J]. Journal of Environmental Monitoring, 2010, 12:2056-2061.
    [8] WIBERG-LARSEN P, GRAEBER D, KRISTENSEN E A, et al. Trait characteristics determine pyrethroid sensitivity in nonstandard test species of freshwater macroinvertebrates:A reality check[J]. Environmental Science & Technology, 2016, 50:4971-4978.
    [9] ASHAUER R, JAGER T. Physiological modes of action across species and toxicants:The key to predictive ecotoxicology[J]. Environmental Science Processes & Impacts, 2018, 20:48-57.
    [10] U.S. ENVIRONMENTAL PROTECTION AGENCY. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates[M]. EPA 600/R-99/064. 2nd ed. Washington, DC:U.S. Environmental Protection Agency, 2000:63-71.
    [11] LI H Z, YOU J, WANG W X. Multi-compartmental toxicokinetic modeling of fipronil in tilapia:Accumulation, biotransformation and elimination[J]. Journal of Hazardous Materials, 2018, 360:420-427.
    [12] LANDRUM P F, LEE H, LYDY M J. Toxicokinetics in aquatic systems:Model comparisons and use in hazard assessment[J]. Environmental Toxicology and Chemistry, 1992, 11:1709-1725.
    [13] QU H, WANG P, MA R X, et al. Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida)[J]. Science of the Total Environment, 2014, 485-486:415-420.
    [14] LIU T T, WANG P, LU Y L et al. Enantioselective bioaccumulation of soil-associated fipronil enantiomers in Tubifex tubifex[J]. Journal of Hazardous Materials, 2012, 219-220:50-56.
    [15] KATAGI T, Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms[J]. Reviews of Environmental Contamination and Toxicology, 2010, 204:1-132.
    [16] KATAGI T, OSE K. Toxicity, bioaccumulation and metabolism of pesticides in the earthworm[J]. Journal of Pesticide Science, 2015, 40:69-81.
    [17] MICHEL N, FREESE M, BRINKMANN M, et al. Fipronil and two of its transformation products in water and European eel from the river Elbe[J]. Science of the Total Environment, 2016, 568:171-179.
    [18] YOU J, BRENNAN A, LYDY M J. Bioavailability and biotransformation of sediment-associated pyrethorid insecticides in Lumbriculus variegatus[J]. Chemosphere, 2009, 75:1477-1482.
    [19] ZHANG B Z, LI H Z, WEI Y L, et al. Bioaccumulation kinetics of polybrominated diphenyl ethers and decabromodiphenyl ethane from field-collected sediment in the oligochaete, Lumbriculus variegatus[J]. Environmental Toxicology and Chemistry, 2013, 32:2711-2718.
    [20] QIN F, GAO Y X, XU P, et al. Enantioselective bioaccumulation and toxic effects of fipronil in the earthworm Eisenia foetida following soil exposure[J]. Pest Management Science, 2015, 71:553-561.
    [21] 吕银知, 张芊芊, 赵建亮,等. 生理毒代动力学模型及其在有机污染物水生生态毒理研究中的应用[J]. 生态毒理学报, 2018, 13(5):11-26.

    LV Y Z, ZHANG Q Q, ZHAO J L, et al. Physiologically based toxicokinetic models and application in aquatic ecotoxicological studies of organic pollutants:A review[J]. Asian Journal of Ecotoxicology, 2018, 13(5):11-26(in Chinese).

    [22] SOKAL R R, ROHLF F J, Biometry[M]. 3rd ed. New York, NY, USA:W.H. Freeman and Company, 1995.
    [23] KONWICK B J, GARRISON A W, BLACK M C, et al. Bioaccumulation, biotransformation, and metabolite formation of fipronil and chiral legacy pesticides in rainbow trout[J]. Environmental Science & Technology, 2006, 40:2930-2936.
  • 加载中
计量
  • 文章访问数:  1977
  • HTML全文浏览数:  1977
  • PDF下载数:  86
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-26
  • 刊出日期:  2020-01-01
王顺慧, 李慧珍, 游静. 利用毒代动力学模型研究氟虫腈在夹杂带丝蚓体内的手性选择性积累过程[J]. 环境化学, 2020, (1): 12-18. doi: 10.7524/j.issn.0254-6108.2019012601
引用本文: 王顺慧, 李慧珍, 游静. 利用毒代动力学模型研究氟虫腈在夹杂带丝蚓体内的手性选择性积累过程[J]. 环境化学, 2020, (1): 12-18. doi: 10.7524/j.issn.0254-6108.2019012601
WANG Shunhui, LI Huizhen, YOU Jing. Enantioselective bioaccumulation of waterborne fipronil in Lumbriculus variegatus with toxicokinetic modeling[J]. Environmental Chemistry, 2020, (1): 12-18. doi: 10.7524/j.issn.0254-6108.2019012601
Citation: WANG Shunhui, LI Huizhen, YOU Jing. Enantioselective bioaccumulation of waterborne fipronil in Lumbriculus variegatus with toxicokinetic modeling[J]. Environmental Chemistry, 2020, (1): 12-18. doi: 10.7524/j.issn.0254-6108.2019012601

利用毒代动力学模型研究氟虫腈在夹杂带丝蚓体内的手性选择性积累过程

    通讯作者: 游静, E-mail: youjing@jnu.edu.cn
  • 1. 中国科学院广州地球化学研究所有机地球化学国家重点实验室, 广州, 510640;
  • 2. 暨南大学环境学院, 广东省环境污染与健康重点实验室, 广州, 510632;
  • 3. 西南石油大学化学化工学院, 四川省油气田应用化学重点实验室, 成都, 610500;
  • 4. 中国科学院大学, 北京, 100049
基金项目:

广东省自然科学基金(2017A030313065,2015A030310219,2016A030312009)资助.

摘要: 农药的生物积累直接影响其毒性,但是手性农药在生物体内的选择性积累过程仍不明确.本文在恒定环境水浓度的条件下,开展手性农药氟虫腈的外消旋体及其对映体在底栖无脊椎动物夹杂带丝蚓体内的生物积累实验.在96 h和72 h的吸收和消除实验过程中,测定生物体内的氟虫腈的外消旋体和对映体浓度随时间的变化情况,构建毒代动力学模型,获取吸收和消除速率常数.结果表明夹杂带丝蚓对R-氟虫腈的生物浓缩因子(1981 L·kg-1脂肪)比对S-氟虫腈(1748 L·kg-1脂肪)更大.R-氟虫腈和S-氟虫腈的吸收速率常数相当,分别为311±11 L·kg-1脂肪·h-1和313±13 L·kg-1脂肪·h-1,而R-氟虫腈的消除速率常数小于S-氟虫腈,分别为0.157±0.006 h-1和0.179±0.008 h-1,因此相对较慢的消除是导致R-氟虫腈在夹杂带丝蚓体内更高生物积累的主要原因.研究说明毒代动力学参数可有效阐释手性外源物质在生物体内选择性积累的差异.

English Abstract

参考文献 (23)

返回顶部

目录

/

返回文章
返回