微生物燃料电池串并联研究及应用
Research progress of series and parallel stack of microbial fuel cells
-
摘要: 微生物燃料电池(Microbial fuel cells,MFC)是一种可以通过微生物胞外电子传递将水环境可氧化物质中的化学能直接转化为电能的一种生物电化学技术,在废水处理、水环境修复、环境监测和脱盐等领域有广泛的应用前景.在过去的20年间,MFC经历了快速的发展,正面临实际应用的关键挑战.输出功率低是限制MFC实际环境应用的主要因素之一.MFC的串并联(即MFC堆栈)是进一步提高MFC功率输出的有效途径,大多已报道的MFC实际应用案例都采用了串并联的方式.本文介绍了MFC串并联最近的研究进展、存在问题及解决方法,并对MFC的应用和今后的主要发展方向进行了总结和展望,为构建更高效实用的MFC串并联体系,推动微生物电化学技术更好地服务于实际社会需求提供重要参考.Abstract: Microbial fuel cells (MFC) is a bioelectrochemical technology that can convert chemical energy of bio-oxidizable chemicals in water environments into electrical energy through microbial extracellular respiration. It is a promising technology in many fields such as wastewater treatment, aquatic environment protection and monitoring, and desalination. In the past 20 years, MFC has experienced rapid development and the power density of MFC has been largely increased. At present, how to apply MFC in practical environments is considered to be the most challenging problems. Lower power output is one of the main limits of MFC for the practical application. Stacking multiple MFC in serial or parallel (e.g. MFC stacks) is an effective way to improve the MFC power output, and MFC stacks have been adopted in most reported MFC practical applications. This review introduced the basic principles and the latest research progress of MFC stacks. The existing problems and possible solutions of MFC stacks were also discussed. Moreover, the recent practical applications and future research directions of MFC stack were summarized and proposed. We hope the information provided here are helpful for further developing MFC systems with high efficiency and feasibility, and for applying MFC stacks to meet the practical society needs.
-
Key words:
- microbial fuel cells /
- bioelectrochemical systems /
- series stack /
- parallel stack
-
-
[1] POTTER M C. Electrical effects accompanying the decomposition of organic compounds[J]. Proceedings of the Royal Society of London, 1911, 84(571):260-276. [2] LOGAN B E, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.[J]. Science, 2012, 337(6095):686-690. [3] YANG Y G, SUN G P, XU M Y. Microbial fuel cells come of age[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(5):625-632. [4] SANTORO C, ARBIZZANI C, ERABLE B, et al. Microbial fuel cells:From fundamentals to applications. A review[J]. Journal of Power Sources, 2017, 356:225-244. [5] LOGAN B E. Scaling up microbial fuel cells and other bioelectrochemical systems[J]. Applied Microbiology and Biotechnology, 2010, 85(6):1665-1671. [6] LOGAN B E, WALLACK M J, KIM K Y, et al. Assessment of microbial fuel cell configurations and power densities[J]. Environmental Science & Technology Letters, 2015, 2(8):206-214. [7] EWING T, HA P T, BABAUTA J T, et al. Scale-up of sediment microbial fuel cells[J]. Journal of Power Sources, 2014, 272:311-319. [8] 高利敏,张海东,申渝. 微生物燃料电池堆栈技术研究[J]. 山东化工,2015,44(23):135-138. GAO L M, ZHANG H D, SHEN Y. The research of stacking microbial fuel cell[J]. Shan Dong Chemical Industry, 2015,44(23):135-138(in Chinese).
[9] 孔令才,周顺桂,赵华章,等. 厌氧折流板式微生物燃料电池堆影响因素研究[J]. 环境工程学报,2010,4(1):21-26. KONG L C, ZHOU S G, ZHAO H Z, et al. Parameters affecting the performance of anaerobic baffled stacking microbial fuel cell[J]. Chinese Journal of Environmental Engineering, 2010,4(1):21-26(in Chinese).
[10] ZHOU C Y, FU Y B, ZHANG H S, et al. Structure design and performance comparison of large-scale marine sediment microbial fuel cells in lab and real sea as power source to drive monitoring instruments for long-term work[J]. Ionics, 2018, 24(3):797-805. [11] TENDER L M, GRAY S A, GROVEMAN E, et al. The first demonstration of a microbial fuel cell as a viable power supply:Powering a meteorological buoy[J]. Journal of Power Sources, 2008, 179(2):571-575. [12] IEROPOULOS I A, LEDEZMA P, STINCHCOMBE A, et al. Waste to real energy:The first mfc powered mobile phone[J]. Physical Chemistry Chemical Physics, 2013, 15(37):15312-15316. [13] COHEN B. The bacterial culture as an electrical half-cell[J]. Journal of Bacteriology, 1931, 21(1):18-19. [14] AELTERMAN P, RABAEY K, PHAM H T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(10):3388-3394. [15] DEKKER A, HEIJNE A T, SAAKES M, et al. Analysis and improvement of a scaled-up and stacked microbial fuel cell[J]. Environmental Science & Technology, 2009, 43(23):9038-9042. [16] ZHUANG L, YUAN Y, WANG Y, et al. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater[J]. Bioresource Technology, 2012, 123:406-412. [17] WINFIELD J, IEROPOULOS I, GREENMAN J, et al. Investigating the effects of fluidic connection between microbial fuel cells[J]. Bioprocess & Biosystems Engineering, 2011, 34(4):477-484. [18] WALTER X A, STINCHCOMBE A, GREENMAN J, et al. Urine transduction to usable energy:A modular mfc approach for smartphone and remote system charging[J]. Applied Energy, 2017, 192:575-581. [19] IEROPOULOS I A, STINCHCOMBE A, GAJDA I, et al. Pee power urinal -microbial fuel cell technology field trials in the context of sanitation[J]. Environmental Science Water Research & Technology, 2016, 2(2):336-343. [20] ESTRADA-ARRIAGA E B, HERNANDEZ-ROMANO J, GARCIA-SANCHEZ L, et al. Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell:Effect of series and parallel configuration[J]. Journal of Environmental Management, 2018, 214:232-241. [21] [22] 宫本月,刘新民,郭庆杰. 厌氧流化床微生物燃料电池及其串并联性能[J]. 环境工程学报,2014,8(10):4527-4532. GONG B Y, LIU X M, GUO Q J. Performances of anaerobic fluidized bed microbial fuel cells and series-parallel connection[J]. Chinese Journal of Environmental Engineering, 2014,8(10):4527-4532(in Chinese).
[23] 徐娜,刘新民. 厌氧流化床微生物燃料电池串联处理啤酒废水[J]. 山东化工,2015,44(9):181-185. XU N, LIU X M. Treatment of the beer wastewater in series of anaerobic fluidized bed microbial fuel cells[J]. Shan Dong Chemical Industry, 2015,44(9):181-185(in Chinese).
[24] TENDER L M, REIMERS C E., STECHER H A, et al. Harnessing microbially generated power on the seafloor[J]. Nature Biotechnology, 2002, 20(8):821-825. [25] ZHANG Y F, ANGELIDAKI I. Microbial electrochemical systems and technologies:It is time to report the capital costs[J]. Environmental Science & Technology, 2016, 50(11):5432-5433. [26] YANG Y G, LU Z J, LIN X K, et al. Enhancing the bioremediation by harvesting electricity from the heavily contaminated sediments[J]. Bioresource Technology, 2015, 179:615-618. [27] KARRA U, HUANG G X, UMAZ R, et al. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system[J]. Bioresource Technology, 2013, 144:477-484. [28] ABAZARIAN E, GHESHLAGHI R, MAHDAVI M A. The effect of number and configuration of sediment microbial fuel cells on their performance in an open channel architecture[J]. Journal of Power Sources, 2016, 325:739-744. [29] AZARI M A G, GHESHLAGHI R, MAHDAVI M A, et al. Electricity generation from river sediments using a partitioned open channel sediment microbial fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(8):5252-5260. [30] SUGNAUX M, SAVY C, CACHELIN C P, et al. Simulation and resolution of voltage reversal in microbial fuel cell stack.[J]. Bioresource Technology, 2017, 238:519-527. [31] YANG Y G, YAN L, SONG J H, et al. Optimizing the electrode surface area of sediment microbial fuel cells[J]. RSC Advances, 2018, 8(45):25319-25324. [32] ZHANG L, LI J, ZHU X, et al. Response of stacked microbial fuel cells with serpentine flow fields to variable operating conditions[J]. International Journal of Hydrogen Energy, 2017, 42(45):27641-27648. [33] GURUNG A, OH S E. The performance of serially and parallelly connected microbial fuel cells.[J]. Energy Sources, 2012, 34(17):1591-1598. [34] LI J, LI H J, FU Q, et al. Voltage reversal causes bioanode corrosion in microbial fuel cell stacks[J]. International Journal of Hydrogen Energy, 2017, 42(45):27649-27656. [35] KIM D, AN J, KIM B, et al. Scaling-up microbial fuel cells:configuration and potential drop phenomenon at series connection of unit cells in shared anolyte[J]. Chemsuschem, 2012, 5(6):1086-1091. [36] ZHUANG L, ZHOU S G. Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack[J]. Electrochemistry Communications, 2009, 11(5):937-940. [37] YAZDI H, ALZATE-GAVIRIA L, REN Z J. Pluggable microbial fuel cell stacks for septic wastewater treatment and electricity production[J]. Bioresource Technology, 2015, 180:258-263. [38] IEROPOULOS I, GREENMAN J, MELHUISH C. Microbial fuel cells based on carbon veil electrodes:Stack configuration and scalability[J]. International Journal of Energy Research, 2010, 32(13):1228-1240. [39] WANG Z J, WU Y C, WANG L, et al. Polarization behavior of microbial fuel cells under stack operation[J]. Chinese Science Bulletin, 2014, 59(18):2214-2220. [40] YANG Y G,YAN L,LIN X K,et al. Effects of unit distance and number on sediment microbial fuel cell stacks for practical power supply[J]. International Journal of Energy Research, 2019,43:7287-7295. [41] WANG B, HAN J I. A single chamber stackable microbial fuel cell with air cathode[J]. Biotechnology Letters, 2009, 31(3):387-393. [42] ZHAO N N, ANGELIDAKI I, ZHANG Y F. Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol[J]. Water Research, 2017, 109:367-374. [43] WANG H, PARK J D, REN Z J. Practical energy harvesting for microbial fuel cells:A review[J]. Environmental Science & Technology, 2015, 49(6):3267-3277. [44] LOBO F L, WANG H M, FORRESTAL C, et al. AC power generation from microbial fuel cells[J]. Journal of Power Sources, 2015, 297:252-259. [45] YAMASHITA T, HAYASHI T, IWASAKI H, et al. Ultra-low-power energy harvester for microbial fuel cells and its application to environmental sensing and long-range wireless data transmission[J]. Journal of Power Sources, 2019,430:1-11. [46] ALARAJ M, RADENKOVIC M, PARK J D. Intelligent energy harvesting scheme for microbial fuel cells:Maximum power point tracking and voltage overshoot avoidance[J]. Journal of Power Sources, 2017, 342:726-732. [47] DEWAN A, BEYENAL H, LEWANDOWSKI Z. Intermittent energy harvesting improves the performance of microbial fuel cells[J]. Environmental Science & Technology, 2009, 43(12):4600-4605. [48] LIANG P, WU W L, WEI J C, et al. Alternate charging and discharging of capacitor to enhance the electron production of bioelectrochemical Systems[J]. Environmental Science & Technology, 2011, 45(15):6647-6653. [49] LIU J, FENG Y J, HE W H, et al. A novel boost circuit design and in situ electricity application for elemental sulfur recovery[J]. Journal of Power Sources, 2014, 248:317-322. [50] WILKINSON S. "Gastrobots"-Benefits and challenges of microbial fuel cells in foodpowered robot applications[J]. Autonomous Robots, 2000, 9(2):99-111. [51] IEROPOULOS I A, GREENMAN J, MELHUISH C, et al. Microbial fuel cells for robotics:energy autonomy through artificial symbiosis[J]. Chemsuschem, 2012, 5(6):1020-1026. [52] WALTER X A, MERINO-JIMENEZ I, GREENMAN J, et al. Pee power®, urinal II -urinal scale-up with microbial fuel cell scale-down for improved lighting[J]. Journal of Power Sources, 2018, 392:150-158. [53] DONOVAN C, DEWAN A, PENG H A, et al. Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell[J]. Journal of Power Sources, 2011, 196(3):1171-1177. [54] DEWAN A, DONOVAN C, HEO D, et al. Evaluating the performance of microbial fuel cells powering electronic devices[J]. Journal of Power Sources, 2010, 195(1):90-96. [55] ZAI J Z, FU Y B, ZAI X R, et al. Fabrication of novel Ag/AgCl electrode pair on the template of carbon foam as marine electric field sensor and its electrochemical performances[J]. Ionics, 2017, 23(8):2213-2219. -

计量
- 文章访问数: 3700
- HTML全文浏览数: 3700
- PDF下载数: 101
- 施引文献: 0