氧化亚钴复合材料催化降解三溴苯酚

李春雨, 吴浩伟, 陈月, 唐玉霖. 氧化亚钴复合材料催化降解三溴苯酚[J]. 环境化学, 2020, (5): 1210-1216. doi: 10.7524/j.issn.0254-6108.2019081202
引用本文: 李春雨, 吴浩伟, 陈月, 唐玉霖. 氧化亚钴复合材料催化降解三溴苯酚[J]. 环境化学, 2020, (5): 1210-1216. doi: 10.7524/j.issn.0254-6108.2019081202
LI Chunyu, WU Haowei, CHEN Yue, TANG Yulin. Catalytic degradation of tribromophenol by cobalt oxide composites[J]. Environmental Chemistry, 2020, (5): 1210-1216. doi: 10.7524/j.issn.0254-6108.2019081202
Citation: LI Chunyu, WU Haowei, CHEN Yue, TANG Yulin. Catalytic degradation of tribromophenol by cobalt oxide composites[J]. Environmental Chemistry, 2020, (5): 1210-1216. doi: 10.7524/j.issn.0254-6108.2019081202

氧化亚钴复合材料催化降解三溴苯酚

    通讯作者: 唐玉霖, E-mail: tangtongji@126.com
  • 基金项目:

    国家自然科学基金(21776224)和国家重大水专项(2017ZX07201-002)资助.

Catalytic degradation of tribromophenol by cobalt oxide composites

    Corresponding author: TANG Yulin, tangtongji@126.com
  • Fund Project: Supported by the National Natural Science Foundation of China (21776224) and National Water Pollution Control and Treatment Key Technologies RD Program (2017ZX07201-002).
  • 摘要: 本论文利用具有可见光催化性能的氧化亚钴/石墨烯(CoO/石墨烯)复合材料降解2,4,6-三溴苯酚(2,4,6-tribromophenol,TBP),探究其光催化降解效能与反应机理.研究发现,在光催化降解阶段,CoO/石墨烯复合材料光照120 min后,日光比可见光具有更强的降解效率,将TBP总去除率从21.8%提升至51.4%,日光中的紫外部分容易被材料利用来降解TBP.将光催化与高级氧化技术联用,构建CoO/石墨烯复合材料活化两种过硫酸盐PS与PMS的光芬顿体系.研究可知,单独光照活化过硫酸盐效果不佳,CoO/石墨烯-过硫酸盐类芬顿体系较Co2+-过硫酸盐均相体系TBP降解效率更高,反应更彻底.加入光照后,光照-CoO/石墨烯-过硫酸盐光芬顿体系具有较高的污染物降解率和TOC矿化度,反应速率常数进一步提高,在日光照射下,TOC去除率达到98.9%.
  • 加载中
  • [1] LEGLER J, BROUWER A. Are brominated flame retardants endocrine disruptors?[J]. Environment International, 2003, 29(6):879-885.
    [2] POTVIN C M, LONG Z, ZHOU H. Removal of tetrabromobisphenol A by conventional activated sludge, submerged membrane and membrane aerated biofilm reactors[J]. Chemosphere, 2012, 89(10):1183-1188.
    [3] ZHANG Y, TANG Y, LI S, et al. Sorption and removal of tetrabromobisphenol A from solution by graphene oxide[J]. Chemical Engineering Journal, 2013, 222:94-100.
    [4] QU R, FENG M, WANG X, et al. Rapid removal of tetrabromobisphenol A by ozonation in water:Oxidation products, reaction pathways and toxicity assessment[J]. PloS One, 2015, 10(10):e0139580.
    [5] XU J, MENG W, ZHANG Y, et al. Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr:Efficacy, products and pathway[J]. Applied Catalysis B:Environmental, 2011, 107(3-4):355-362.
    [6] TIAN J, LIU R, LIU Z, et al. Boosting the photocatalytic performance of Ag2CO3 crystals in phenol degradation via coupling with trace N-CQDs[J]. Chinese Journal of Catalysis, 2017, 38(12):1999-2008.
    [7] YU C, WU Z, LIU R, et al. Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination[J]. Applied Catalysis B:Environmental, 2017, 209:1-11.
    [8] ZENG D, YANG K, YU C, et al. Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance[J]. Applied Catalysis B:Environmental, 2018, 237:449-463.
    [9] HWANG Y J, YANG S, JEON E H, et al. Photocatalytic oxidation activities of TiO2 nanorod arrays:A surface spectroscopic analysis[J]. Applied Catalysis B:Environmental, 2016, 180:480-486.
    [10] BAI X, SUN C, LIU D, et al. Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension[J]. Applied Catalysis B:Environmental, 2017, 204:11-20.
    [11] ZOU W, ZHANG L, LIU L, et al. Engineering the Cu2O-reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light[J]. Applied Catalysis B:Environmental, 2016, 181:495-503.
    [12] BARRAS A, CORDIER S, BOUKHERROUB R. Fast photocatalytic degradation of rhodamine B over[Mo6Br8(N3)6]2- cluster units under sun light irradiation[J]. Applied Catalysis B:Environmental, 2012, 123-124:1-8.
    [13] CHEN S, WANG L, WU Q, et al. Advanced non-precious electrocatalyst of the mixed valence CoOxnanocrystals supported on N-doped carbon nanocages for oxygen reduction[J]. Science China Chemistry, 2015, 58(1):180-186.
    [14] ZHANG H, TIAN W, GUO X, et al. Flower-like cobalt hydroxide/oxide on graphitic carbon nitride for visible-light-driven water oxidation[J]. ACS Applied Materials & Interfaces, 2016, 8(51):35203-35212.
    [15] WANG X, TIAN W, ZHAI T, et al. Cobalt(Ⅱ,Ⅲ) oxide hollow structures[J]. Fabrication, Properties and Applications, 2012, 22(44):23310-23326.
    [16] SHI P, SU R, ZHU S, et al. Supported cobalt oxide on graphene oxide:Highly efficient catalysts for the removal of Orange Ⅱ from water[J]. Journal of Hazardous Materials, 2012, 229-230:331-339.
    [17] ZHANG Y, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065):201-204.
    [18] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200.
    [19] TANG Y, DONG L, MAO S, et al. Enhanced photocatalytic removal of tetrabromobisphenol a by magnetic CoO@graphene nanocomposites under visible-light irradiation[J]. ACS Applied Energy Materials, 2018, 1(6):2698-2708.
    [20] LING S K, WANG S, PENG Y. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate[J]. Journal of Hazardous Materials, 2010, 178(1-3):385-389.
    [21] ANIPSITAKIS G P, DIONYSIOU D D. Transition metal/UV-based advanced oxidation technologies for water decontamination[J]. Applied Catalysis B:Environmental, 2004, 54(3):155-163.
    [22] BANDALA E R, PELÁEZ M A, DIONYSIOU D D, et al. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2007, 186(2-3):357-363.
    [23] SHUKLA P R, WANG S, SUN H, et al. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution[J]. Applied Catalysis B:Environmental, 2010, 100(3):529-534.
    [24] CHEN X, CHEN J, QIAO X, et al. Performance of nano-Co3O4/peroxymonosulfate system:Kinetics and mechanism study using Acid Orange 7 as a model compound[J]. Applied Catalysis B:Environmental, 2008, 80(1):116-121.
    [25] 刘桂芳, 孙亚全, 陆洪宇, 等. 活化过硫酸盐技术的研究进展[J]. 工业水处理, 2012, 32(12):6-10.

    LIU G F, SUN Y Q, LU H Y, et al. Research progress in activated persulfate technology[J]. Industrial Water Treatment, 2012, 32(12):6-10(in Chinese).

    [26] JI Y, KONG D, LU J, et al. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A:Kinetics, reaction pathways, and formation of brominated by-products[J]. Journal of Hazardous Materials, 2016, 313:229-237.
    [27] HOWE P D, DOBSON S, MALCOLM H M, et al. 2,4,6-Tribromophenol and other simple brominated phenols[M]. Geneva:World Health Organization. 2005.
    [28] BAO Y, NIU J. Photochemical transformation of tetrabromobisphenol A under simulated sunlight irradiation:Kinetics, mechanism and influencing factors[J]. Chemosphere, 2015, 134:550-556.
    [29] 顾雍, 孙贤波, 刘勇弟, 等. 活性污泥法降解三溴苯酚[J]. 华东理工大学学报:自然科学版, 2016, 42(5):664-669.

    GU Y, SUN X B, LIU Y D, et al. Biodegradation of tribromophenol in activated sludge system[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(5):664-669(in Chinese).

  • 加载中
计量
  • 文章访问数:  2242
  • HTML全文浏览数:  2242
  • PDF下载数:  57
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-12

氧化亚钴复合材料催化降解三溴苯酚

    通讯作者: 唐玉霖, E-mail: tangtongji@126.com
  • 1. 同济大学环境科学与工程学院, 上海, 200092;
  • 2. 河北建设集团安装工程有限公司, 保定, 071000
基金项目:

国家自然科学基金(21776224)和国家重大水专项(2017ZX07201-002)资助.

摘要: 本论文利用具有可见光催化性能的氧化亚钴/石墨烯(CoO/石墨烯)复合材料降解2,4,6-三溴苯酚(2,4,6-tribromophenol,TBP),探究其光催化降解效能与反应机理.研究发现,在光催化降解阶段,CoO/石墨烯复合材料光照120 min后,日光比可见光具有更强的降解效率,将TBP总去除率从21.8%提升至51.4%,日光中的紫外部分容易被材料利用来降解TBP.将光催化与高级氧化技术联用,构建CoO/石墨烯复合材料活化两种过硫酸盐PS与PMS的光芬顿体系.研究可知,单独光照活化过硫酸盐效果不佳,CoO/石墨烯-过硫酸盐类芬顿体系较Co2+-过硫酸盐均相体系TBP降解效率更高,反应更彻底.加入光照后,光照-CoO/石墨烯-过硫酸盐光芬顿体系具有较高的污染物降解率和TOC矿化度,反应速率常数进一步提高,在日光照射下,TOC去除率达到98.9%.

English Abstract

参考文献 (29)

目录

/

返回文章
返回