钛掺杂氧化铋紫外光催化降解水中全氟辛酸(PFOA)

李惠惠, 张圆正, 嵇阳远, 王凯旋, 殷立峰. 钛掺杂氧化铋紫外光催化降解水中全氟辛酸(PFOA)[J]. 环境化学, 2020, (5): 1202-1209. doi: 10.7524/j.issn.0254-6108.2019081507
引用本文: 李惠惠, 张圆正, 嵇阳远, 王凯旋, 殷立峰. 钛掺杂氧化铋紫外光催化降解水中全氟辛酸(PFOA)[J]. 环境化学, 2020, (5): 1202-1209. doi: 10.7524/j.issn.0254-6108.2019081507
LI Huihui, ZHANG Yuanzheng, JI Yangyuan, WANG Kaixuan, YIN Lifeng. Study on the mechanism of photocatalytic degradation of PFOA under UV-light by Ti (Ⅳ) doped Bi2O3[J]. Environmental Chemistry, 2020, (5): 1202-1209. doi: 10.7524/j.issn.0254-6108.2019081507
Citation: LI Huihui, ZHANG Yuanzheng, JI Yangyuan, WANG Kaixuan, YIN Lifeng. Study on the mechanism of photocatalytic degradation of PFOA under UV-light by Ti (Ⅳ) doped Bi2O3[J]. Environmental Chemistry, 2020, (5): 1202-1209. doi: 10.7524/j.issn.0254-6108.2019081507

钛掺杂氧化铋紫外光催化降解水中全氟辛酸(PFOA)

    通讯作者: 殷立峰, E-mail: lfyin@bnu.edu.cn
  • 基金项目:

    国家自然科学基金(21777009)和北京市自然科学基金(8182031)资助.

Study on the mechanism of photocatalytic degradation of PFOA under UV-light by Ti (Ⅳ) doped Bi2O3

    Corresponding author: YIN Lifeng, lfyin@bnu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21777009)and Beijing Natural Science Foundation(8182031).
  • 摘要: 通过水热法制备了Ti(Ⅳ)掺杂Bi2O3(BTO),采用扫描电镜(SEM)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)等技术对其形貌和结构进行表征,并考察了钛掺杂氧化铋光催化降解水中PFOA的降解效果,发现PFOA的降解符合一级反应动力学,其降解速率常数为-0.2 h-1,比商业用纳米二氧化钛P25提高了6.8倍.表征结果证明,BTO存在多孔结构,能够增加反应活性位点,提高光催化活性面积.同时,自由基捕获实验和中间产物分析表明,光生空穴对PFOA的断链分解起决定性作用;同时Bi—O—Ti表面基团吸附PFOA并弱化了C—F键,导致光生电子可自由移至C—F键上并实现还原脱氟;光生电子和空穴在功能上相互配合,实现了对PFOA的协同降解;PFOA的降解过程受还原性物质主导,通过C—C键的断裂生成短链全氟羧酸类物质.
  • 加载中
  • [1] WU D, LI X K, TANG Y M, et al. Mechanism insight of PFOA degradation by ZnO assisted-photocatalytic ozonation:Efficiency and intermediates[J]. Chemosphere, 2017, 180:247-252.
    [2] HUANG D H, YIN L F, NIU J F. Photoinduced hydrodefluorination mechanisms of perfluorooctanoic acid by the SiC/graphene catalyst[J]. Environmental Science & Technology, 2016, 50(11):5857-5863.
    [3] SHANG E X, LI Y, NIU J F, et al. Photocatalytic degradation of perfluorooctanoic acid over Pb-BiFeO3/rGO catalyst:Kinetics and mechanism[J]. Chemosphere, 2018, 211:34-43.
    [4] TROJANOWICZ M, CZAJKA A B, BARTOSIEWICZ I, et al. Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)-A review of recent advances[J]. Chemical Engineering Journal, 2018, 336:170-199.
    [5] SILVA F L D, LAITINEN T, PIRILA M, et al. Photocatalytic degradation of perfluorooctanoic acid (PFOA) from wastewaters by TiO2, In2O3 and Ga2O3 catalysts[J]. Topics in Catalysis, 2017, 60(17-18):1345-1358.
    [6] ESPANA V A A, MALLAVARAPU M, NAIDU R. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA):A critical review with an emphasis on field testing[J]. Environmental Technology & Innovation, 2015, 4:168-181.
    [7] ROSS I, MCDONOUGH J, MILES J, et al. A review of emerging technologies for remediation of PFASs[J]. Remediation Journal, 2018, 28(2):101-126.
    [8] LIU T Z, GU Y R, XING D Y, et al. Rapid and high-capacity adsorption of PFOS and PFOA by regenerable ammoniated magnetic particle[J]. Environmental Science and Pollution Research, 2018, 25(14):13813-13822.
    [9] RUIZ B G, RIBAO P, DIBAN N, et al. Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2-rGO catalyst[J]. Journal of Hazardous Materials, 2018, 344:950-957.
    [10] PANCHANGAM S C, YeELLATUR C S, YANG J S, et al. Facile fabrication of TiO2-graphene nanocomposites (TGNCs) for the efficient photocatalytic oxidation of perfluorooctanoic acid (PFOA)[J]. Journal of Environmental Chemical Engineering, 2018, 6(5):6359-6369.
    [11] WU D, LI X K, ZHANG J X, et al. Efficient PFOA degradation by persulfate-assisted photocatalytic ozonation[J]. Separation and Purification Technology, 2018, 207:255-261.
    [12] WU Y Y, LI Y Q, FANG C,S et al. Highly efficient degradation of perfluorooctanoic acid over a MnOx-modified oxygen-vacancy-rich In2O3 photocatalyst[J]. Chem Cat Chem, 2019, 11(9):2297-2303.
    [13] ZHAO B X, ZHANG P Y. Photocatalytic decomposition of perfluorooctanoic acid with β-GaO wide bandgap photocatalyst[J]. Catalysis Communications, 2009, 10(8):1184-1187.
    [14] HE R A, ZHOU J Q, FU H Q, et al. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity[J]. Applied Surface Science, 2018, 430:273-282.
    [15] LIM H, RAWAL S B. Integrated Bi2O3 nanostructure modified with Au nanoparticles for enhanced photocatalytic activity under visible light irradiation[J]. Progress in Natural Science:Materials International, 2017, 27(3):289-296.
    [16] CHEN M J, LI Y, WANG Z Y, et al. Controllable synthesis of core-shell Bi@amorphous Bi2O3 nanospheres with tunable optical and photocatalytic activity for NO removal[J]. Industrial & Engineering Chemistry Research, 2017, 56(37):10251-10258.
    [17] YIN L F, NIU J F, SHEN Z Y, et al. The electron structure and photocatalytic activity of Ti(Ⅳ) doped Bi2O3[J]. Science China Chemistry, 2010, 54(1):180-185.
    [18] YIN L F, NIU J F, SHEN Z Y, et al. Mechanism of reductive decomposition of pentachlorophenol by Ti-doped β-Bi2O3 under visible light irradiation[J]. Environmental Science & Technology, 2010, 44(14):5581-5586.
    [19] LUO Q, WANG Z Y, FENG M B, et al. Factors controlling the rate of perfluorooctanoic acid degradation in laccase-mediator systems:The impact of metal ions[J]. Environmental Pollution, 2017, 224:649-657.
  • 加载中
计量
  • 文章访问数:  2901
  • HTML全文浏览数:  2901
  • PDF下载数:  104
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-15

钛掺杂氧化铋紫外光催化降解水中全氟辛酸(PFOA)

    通讯作者: 殷立峰, E-mail: lfyin@bnu.edu.cn
  • 北京师范大学环境学院, 环境模拟与污染控制国家重点实验室, 北京, 100875
基金项目:

国家自然科学基金(21777009)和北京市自然科学基金(8182031)资助.

摘要: 通过水热法制备了Ti(Ⅳ)掺杂Bi2O3(BTO),采用扫描电镜(SEM)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)等技术对其形貌和结构进行表征,并考察了钛掺杂氧化铋光催化降解水中PFOA的降解效果,发现PFOA的降解符合一级反应动力学,其降解速率常数为-0.2 h-1,比商业用纳米二氧化钛P25提高了6.8倍.表征结果证明,BTO存在多孔结构,能够增加反应活性位点,提高光催化活性面积.同时,自由基捕获实验和中间产物分析表明,光生空穴对PFOA的断链分解起决定性作用;同时Bi—O—Ti表面基团吸附PFOA并弱化了C—F键,导致光生电子可自由移至C—F键上并实现还原脱氟;光生电子和空穴在功能上相互配合,实现了对PFOA的协同降解;PFOA的降解过程受还原性物质主导,通过C—C键的断裂生成短链全氟羧酸类物质.

English Abstract

参考文献 (19)

目录

/

返回文章
返回