OsZEP2基因沉默对2,2',5-三氯联苯胁迫下水稻抗氧化反应的影响

邹松霖, 王海鸥, 郝得厚, 牛琳, 徐岁平. OsZEP2基因沉默对2,2',5-三氯联苯胁迫下水稻抗氧化反应的影响[J]. 环境化学, 2020, (5): 1337-1345. doi: 10.7524/j.issn.0254-6108.2019081207
引用本文: 邹松霖, 王海鸥, 郝得厚, 牛琳, 徐岁平. OsZEP2基因沉默对2,2',5-三氯联苯胁迫下水稻抗氧化反应的影响[J]. 环境化学, 2020, (5): 1337-1345. doi: 10.7524/j.issn.0254-6108.2019081207
ZOU Songlin, WANG Haiou, HAO Dehou, NIU Lin, XU Suiping. Effects of OsZEP2 silencing on antioxidiative reaction against PCB18 stress in callus (Oryza sative L.)[J]. Environmental Chemistry, 2020, (5): 1337-1345. doi: 10.7524/j.issn.0254-6108.2019081207
Citation: ZOU Songlin, WANG Haiou, HAO Dehou, NIU Lin, XU Suiping. Effects of OsZEP2 silencing on antioxidiative reaction against PCB18 stress in callus (Oryza sative L.)[J]. Environmental Chemistry, 2020, (5): 1337-1345. doi: 10.7524/j.issn.0254-6108.2019081207

OsZEP2基因沉默对2,2',5-三氯联苯胁迫下水稻抗氧化反应的影响

    通讯作者: 王海鸥, E-mail: wanghaiou@ustb.edu.cn
  • 基金项目:

    农产品产地环境监测北京市重点实验室,北京农业质量标准与检测技术研究中心开放课题(KFEM201802)资助.

Effects of OsZEP2 silencing on antioxidiative reaction against PCB18 stress in callus (Oryza sative L.)

    Corresponding author: WANG Haiou, wanghaiou@ustb.edu.cn
  • Fund Project: Supported by the Foundation of Key Laboratory of Production Environmental Monitoring of Agricultural Products in Beijing (KFEM201802).
  • 摘要: 载脂蛋白基因OsZEP2沉默突变株(mutation type,MT)和野生型(wide type,WT)的水稻愈伤组织被暴露于10、50、100 μg·mL-1的2,2',5-三氯联苯(PCB18)的培养基3 d后,通过比较两种水稻愈伤组织的生长、PCB18积累和抗氧化反应的变化情况,来探究水稻在多氯联苯胁迫下OsZEP2基因对水稻解毒响应机制的影响.实验发现,PCB18可以抑制WT和MT的生长,但PCB18的中浓度胁迫对两种愈伤组织生长的促进作用十分明显,即有"hormesis"效应.PCB18对MT生长的抑制高于WT,低浓度CB18(10 μg·mL-1)胁迫抑制MT生长(4.5%),中浓度PCB18(50 μg·mL-1)促进MT生长(8.3%),高浓度PCB18(100 μg·mL-1)抑制MT生长(9.9%).OsZEP2基因沉默后促进了PCB18在愈伤组织的积累,并导致培养基中的PCB18去除效率提高.OsZEP2基因沉默降低类胡萝卜素含量,导致MT本身的氧化胁迫增强;并且在不同浓度PCB18胁迫下,MT的类胡萝卜素含量稳定,MT的抗氧化反应活性低与WT.在PCB18胁迫下,MT体内的SOD和CAT酶的活性都明显低于WT,这可能是导致膜脂过氧化程度显著升高的重要原因之一.另外,两种嫩弱的愈伤组织中的POD酶抗氧化活性较弱,但OsZEP2沉默可以促进POD酶活性升高.因此,OsZEP2基因沉默导致植物体内的PCB18积累增多,抗氧化反应减弱,不利于植物对PCB18毒性的抵抗.
  • 加载中
  • [1] MURUGAN K, VASUDEVAN N. Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation[J]. Ecotoxicology & Environmental Safety, 2018, 157:40-60.
    [2] KLAPPER R, CARBALLEDA-SANGIAO N, JENSEN H M, et al. Anisakid infection levels in fresh and canned cod liver:Significant reduction through liver surface layer removal[J]. Food Control, 2018, 92:7-24.
    [3] WEBER R, HEROLD C, HOLLERT H, et al. Life cycle of PCBs and contamination of the environment and of food products from animal origin[J]. Environmental Science and Pollution Research International, 2018, 25(1):1-19.
    [4] 王帅, 田良良, 孔聪, 等.水产品中多氯联苯代谢产物的研究进展[J].环境化学,2019,38(01):114-130.

    WANG S, TIAN L L, KONG C, et al. Research progress of polychlorinated biphenyl metabolites aquatic products[J]. Environmental Chemistry, 2019, 38(1):114-130(in Chinese).

    [5] JIN X F, SHUAI J J, PENG R H, et al. Identification of candidate genes involved in responses of arabidopsis to polychlorinated biphenyls based on microarray analysis[J]. Plant Growth Regulation, 2011, 65:127-135.
    [6] HABLE W E, NGUYEN X. Polychlorinated biphenyls disrupt cell division and tip growth in two species of fucoid algae[J]. Journal of Phycology, 2013, 49:701-708.
    [7] AHAMMED G, RUAN Y, ZHOU J, et al. Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato[J]. Chemosphere, 2013, 90:2645-2653.
    [8] WANG X M, TENG Y, ZHANG N, et al. Rhizobial symbiosis alleviates polychlorinated biphenylsinduced systematic oxidative stress via brassinosteroids signaling in alfalfa[J]. Science of the Total Environment, 2017, 592:68-77.
    [9] WANG X, CHEN S, WAN K, et al. Altitude distributions and source analysis of OCPs and PCBs in surface soils of Changbai Mountain, Northeast China[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(6):798-804.
    [10] ZHANG C, YAO F, LIU Y W, et al. Uptake and translocation of organic pollutants in plants:A review[J]. Journal of Integrative Agriculture, 2017, 16(8):1659-1668.
    [11] SYLVESTRE M, MACEK T, MACKOVA M. Transgenic plants to improve rhizoremediation of polychlorinated biphenyls (PCBs)[J]. Current Opinion in Biotechnology, 2009, 20(2):242-247.
    [12] JOANNA F, BURDA K. Potential role of carotenoids as antioxidants in human health and disease[J]. Nutrients, 2014, 6(2):466-488.
    [13] 杨翠翠, 王凤德, 邱念伟, 等.植物载脂蛋白研究进展[J].植物生理学报,2013,49(11):1138-1142.

    YANG C C, WANG F D, QIU N W, et al. Reaserch progress of plant lipocalins[J]. Plant Physiology Journal, 2013, 49(11):1138-1142(in Chinese).

    [14] 吉凌霄, 朱伯华, 李佳佳, 等.植物载脂蛋白家族结构与功能研究进展[J].植物生理学报,2017,53(11):1929-1937.

    JI L X, ZHU B H, LI J J, et al. Advances in structure and function of lipocalin protein family in plants[J]. Plant Physiology Journal, 2017, 53(11):1929-1937(in Chinese).

    [15] JOANNA G, DARIUSZ L, KAZIMIERZ S. Lipocalins:A family portrait[J]. Journal of Plant Physiology, 2006, 163:895-915.
    [16] ZHU S, XIA S, XU X, et al. Regulation of xanthophyll cycle of photosystem by antenna proteins and thylakoid membrane lipids[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(1):197-209.
    [17] GONZALEZJORGE S, MEHRSHAHI P, MAGALLANESLUNDBACK M, et al. Activity potentiates carotenoid degradation in maturing seed[J]. Plant Physiology, 2016, 171(3):1837-1851.
    [18]
    [19] STEBBING A R. Hormesis-the stimulation of growth by low levels of inhibitors[J]. Science of the Total Environment, 1982, 22(3):213-234.
    [20] ABHILASH P C, JAMIL S, SINGH N. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics[J]. Biotechnology Advances, 2009, 27(4):474-488.
    [21] SHAD M A, NAWAZ H, REHMAN T, et al. Determination of some biochemicals, phytochemicals and antioxidant properties of different parts of Cichorium intybus L.:A comparative study[J]. Journal of Animal & Plant Sciences, 2013, 23(4):1060-1066.
    [22] NOCTOR G, LELARGE-TROUVERIE C, MHAMDI A. The metabolomics of oxidative stress[J]. Phytochemistry, 2015, 112(1):33-53.
  • 加载中
计量
  • 文章访问数:  2158
  • HTML全文浏览数:  2158
  • PDF下载数:  41
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-12
邹松霖, 王海鸥, 郝得厚, 牛琳, 徐岁平. OsZEP2基因沉默对2,2',5-三氯联苯胁迫下水稻抗氧化反应的影响[J]. 环境化学, 2020, (5): 1337-1345. doi: 10.7524/j.issn.0254-6108.2019081207
引用本文: 邹松霖, 王海鸥, 郝得厚, 牛琳, 徐岁平. OsZEP2基因沉默对2,2',5-三氯联苯胁迫下水稻抗氧化反应的影响[J]. 环境化学, 2020, (5): 1337-1345. doi: 10.7524/j.issn.0254-6108.2019081207
ZOU Songlin, WANG Haiou, HAO Dehou, NIU Lin, XU Suiping. Effects of OsZEP2 silencing on antioxidiative reaction against PCB18 stress in callus (Oryza sative L.)[J]. Environmental Chemistry, 2020, (5): 1337-1345. doi: 10.7524/j.issn.0254-6108.2019081207
Citation: ZOU Songlin, WANG Haiou, HAO Dehou, NIU Lin, XU Suiping. Effects of OsZEP2 silencing on antioxidiative reaction against PCB18 stress in callus (Oryza sative L.)[J]. Environmental Chemistry, 2020, (5): 1337-1345. doi: 10.7524/j.issn.0254-6108.2019081207

OsZEP2基因沉默对2,2',5-三氯联苯胁迫下水稻抗氧化反应的影响

    通讯作者: 王海鸥, E-mail: wanghaiou@ustb.edu.cn
  • 1. 农产品产地环境监测北京市重点实验室, 北京农业质量标准与检测技术研究中心, 北京, 100097;
  • 2. 北京科技大学化学与生物工程学院, 北京, 100083
基金项目:

农产品产地环境监测北京市重点实验室,北京农业质量标准与检测技术研究中心开放课题(KFEM201802)资助.

摘要: 载脂蛋白基因OsZEP2沉默突变株(mutation type,MT)和野生型(wide type,WT)的水稻愈伤组织被暴露于10、50、100 μg·mL-1的2,2',5-三氯联苯(PCB18)的培养基3 d后,通过比较两种水稻愈伤组织的生长、PCB18积累和抗氧化反应的变化情况,来探究水稻在多氯联苯胁迫下OsZEP2基因对水稻解毒响应机制的影响.实验发现,PCB18可以抑制WT和MT的生长,但PCB18的中浓度胁迫对两种愈伤组织生长的促进作用十分明显,即有"hormesis"效应.PCB18对MT生长的抑制高于WT,低浓度CB18(10 μg·mL-1)胁迫抑制MT生长(4.5%),中浓度PCB18(50 μg·mL-1)促进MT生长(8.3%),高浓度PCB18(100 μg·mL-1)抑制MT生长(9.9%).OsZEP2基因沉默后促进了PCB18在愈伤组织的积累,并导致培养基中的PCB18去除效率提高.OsZEP2基因沉默降低类胡萝卜素含量,导致MT本身的氧化胁迫增强;并且在不同浓度PCB18胁迫下,MT的类胡萝卜素含量稳定,MT的抗氧化反应活性低与WT.在PCB18胁迫下,MT体内的SOD和CAT酶的活性都明显低于WT,这可能是导致膜脂过氧化程度显著升高的重要原因之一.另外,两种嫩弱的愈伤组织中的POD酶抗氧化活性较弱,但OsZEP2沉默可以促进POD酶活性升高.因此,OsZEP2基因沉默导致植物体内的PCB18积累增多,抗氧化反应减弱,不利于植物对PCB18毒性的抵抗.

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回