青藏高原东部过渡区水环境中全氟化合物的分布特征

郑宇, 路国慧, 邵鹏威, 盖楠, 杨永亮, 冯娟, 赵全升. 青藏高原东部过渡区水环境中全氟化合物的分布特征[J]. 环境化学, 2020, (5): 1192-1201. doi: 10.7524/j.issn.0254-6108.2019081506
引用本文: 郑宇, 路国慧, 邵鹏威, 盖楠, 杨永亮, 冯娟, 赵全升. 青藏高原东部过渡区水环境中全氟化合物的分布特征[J]. 环境化学, 2020, (5): 1192-1201. doi: 10.7524/j.issn.0254-6108.2019081506
ZHENG Yu, LU Guohui, SHAO Pengwei, GAI Nan, YANG Yongliang, FENG Juan, ZHAO Quansheng. Level and distribution of perfluorinated compounds in snow and water samples from the transition zone in eastern Qinghai-Tibet[J]. Environmental Chemistry, 2020, (5): 1192-1201. doi: 10.7524/j.issn.0254-6108.2019081506
Citation: ZHENG Yu, LU Guohui, SHAO Pengwei, GAI Nan, YANG Yongliang, FENG Juan, ZHAO Quansheng. Level and distribution of perfluorinated compounds in snow and water samples from the transition zone in eastern Qinghai-Tibet[J]. Environmental Chemistry, 2020, (5): 1192-1201. doi: 10.7524/j.issn.0254-6108.2019081506

青藏高原东部过渡区水环境中全氟化合物的分布特征

    通讯作者: 路国慧, E-mail: guohui-lu@hotmail.com 赵全升, E-mail: zqs0811@sina.com
  • 基金项目:

    国家自然科学基金(41673022)资助.

Level and distribution of perfluorinated compounds in snow and water samples from the transition zone in eastern Qinghai-Tibet

    Corresponding authors: LU Guohui, guohui-lu@hotmail.com ;  ZHAO Quansheng, zqs0811@sina.com
  • Fund Project: Supported by the National Natural Science Foundation of China(41673022).
  • 摘要: 为探究高原过渡区水环境中全氟化合物(perfluorinated compounds,PFCs)的污染状况,以青藏高原东部过渡区典型高山峡谷区、若尔盖草原湿地区为研究区,应用固相萃取结合高效液相色谱-电喷雾负电离源串联质谱的方法对研究区内的降雪样品、河水和草原湿地地表径流样品中的全氟化合物进行测定.降雪样品中平均∑PFCs浓度为6266 pg·L-1,共检出11种PFCs,其中PFBA含量最高,表明该地区的大气中存在着以PFBA为主的PFCs污染.河水样品中检测到7种PFCs,高山峡谷区河水样品中ΣPFCs浓度范围为272—2244 pg·L-1,若尔盖草原湿地区河水样品中ΣPFCs浓度范围为727—5149 pg·L-1,远低于我国东部地区及长江黄河下游区域.若尔盖草原湿地地表径流样品检测出11种PFCs,∑PFCs浓度范围为5837—13720 pg·L-1,高于当地河水中PFCs的浓度,表明地表径流是当地河水中PFCs不可忽略的非点源污染源.运用熵值法得到青藏高原东部过渡区河水中PFOA、PFOS及PFBA的风险值均远低于参考值,未达到对生态环境具有风险的水平.
  • 加载中
  • [1] PAUL A G, JONES K C, SWEETMAN A J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate[J]. Environmental Science & Technology, 2009, 43(2):386-392.
    [2] FURDUI V I, STOCK N L, ELLIS D A, et al. Spatial distribution of perfluoroalkyl contaminants in lake trout from the Great Lakes[J]. Environmental Science & Technology, 2007, 41(5):1554-1559.
    [3] GIESY J P, KANNAN K. Perfluorochemical surfactants in the environment[J]. Environmental Science & Technology, 2002, 36(7):146A-152A.
    [4] 姚义鸣, 赵洋洋, 孙红文. 天津市大气中全氟化合物挥发性前体物的分布和季节变化[J]. 环境化学, 2016, 35(7):1329-1336.

    YAO Y M, ZHAO Y Y, SUN H W. The atmospheric distribution and seasonal variation of volatile perfluoroalkyl substance precursors in Tianjin[J]. Environmental Chemistry, 2016, 35(7):1329-1336(in Chinese).

    [5] 李法松, 何娜, 覃雪波, 等. 全氟化合物在天津大黄堡湿地多介质分布研究[J]. 环境化学, 2011, 30(3):638-644.

    LI F S, HE N, QIN X B, et al. The distubution of perfluorinated compounds in multiple environmental media from Dahuangpu Wetland Natural Conservation, Tianjin, China[J]. Environmental Chemistry, 2011, 30(3):638-644(in Chinese).

    [6] KELLY B C, IKONOMOU M G, BLAIR J D, et al. perfluoroalkyl contaminants in an arctic marine food web:Trophic magnification and wildlife exposure[J]. Environmental Science & Technology, 2009, 43(11):4037-4043.
    [7] SO M K, YAMASHITA N, TANIYASU S, et al. Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China[J]. Environmental Science & Technology, 2006, 40(9):2924-2929.
    [8] YEUNG L W Y, SO M K, JIANG G B, et al. Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China[J]. Environmental Science & Technology, 2006, 40(3):715-720.
    [9] WALLINGTON T J, HURLEY M D, XIA J, et al. Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol[J]. Environmental Science & Technology, 2006, 40(3):924-930.
    [10] SCOTT B F, SPENCER C, MABURY S A, et al. Poly and perfluorinated carboxylates in north American precipitation[J]. Environmental Science & Technology, 2006, 40(23):7167-7174.
    [11] YAMASHITA N, KANNAN K, TANIYASU S, et al. A global survey of perfluorinated acids in oceans[J]. Marine Pollution Bulletin, 2005, 51(8-12):658-668.
    [12] TANIYASU S, YAMASHITA N, MOON H B, et al. Does wet precipitation represent local and regional atmospheric transportation by perfluorinated alkyl substances?[J]. Environment International, 2013, 55:25-32.
    [13] WANG Q, ZHAO Z, RUAN Y, et al. Occurrence and distribution of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in natural forest soils:A nationwide study in China[J]. Science of the Total Environment, 2018, 645:596-602.
    [14] CASAL P, ZHANG Y, MARTIN J W, et al. Role of snow deposition of perfluoroalkylated substances at Coastal Livingston Island (Maritime Antarctica)[J]. Environmental Science & Technology, 2017, 51(15):8460-8470.
    [15] WANG X, CHEN M, GONG P, et al. Perfluorinated alkyl substances in snow as an atmospheric tracer for tracking the interactions between westerly winds and the Indian Monsoon over western China[J]. Environment International, 2019, 124:294-301.
    [16] YAMAZAKI E, FALANDYSZ J, TANIYASU S, et al. Perfluorinated carboxylic and sulphonic acids in surface water media from the regions of tibetan plateau:Indirect evidence on photochemical degradation?[J]. Environmental Letters, 2016, 51(1):63-69.
    [17] YEUNG L W Y, DASSUNCAO C, MABURY S, et al. Vertical profiles, sources, and transport of PFASs in the Arctic Ocean[J]. Environmental Science & Technology, 2017, 51(12):6735-6744.
    [18] MUIR D, BOSSI R, CARLSSON P, et al. Levels and trends of poly- and perfluoroalkyl substances in the Arctic environment-An update[J]. Emerging Contaminants, 2019, 5:240-271.
    [19] Water quality-Determination of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in water-Method using solid phase extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS)[S]. ISO 21675, International Organization for Standardization:Geneva, Switzerland, 2019.
    [20] SHAN G, CHEN X, ZHU L. Occurrence, fluxes and sources of perfluoroalkyl substances with isomer analysis in the snow of northern China[J]. Journal Of Hazardous Materials, 2015, 299:639-646.
    [21] 王杰明, 潘媛媛, 史亚利, 等. 北京城区降雪中全氟化合物的污染水平[J]. 中国科学:化学, 2011, 41(5):900-906.

    WANG J M, PAN Y Y, SHI Y L, et al. Perfluorinated compounds in snow from downtown of Beijing, China[J]. Scientia Sinica Chimica, 2011, 41(5):900-906(in Chinese).

    [22] 张明, 唐访良, 俞雅雲, 等. 杭州地区城区降雪中全氟化合物的污染特征[J]. 环境科学, 2017, 38(8):3185-3191.

    ZHANG M, TANG F L, YU Y Y,et al. Perfluorinated compounds in snow from downtown Hangzhou, China[J]. Environmental Science. 2017, 38(8):3185-3191(in Chinese).

    [23] 黄焕芳. 青藏高原有机氯农药的大气长距离迁移转化研究[D]. 武汉:中国地质大学, 2018. HUANG H F. Long-range atmospheric transport and transformations of organochlorine pesticides (OCPs) in the Qinghai-Tibet Plateau[D]. Wuhan:China University of Geosciences, 2018(in Chinese).
    [24] ELLIS D A, MARTIN J W, MABURY S A, et al. Atmospheric lifetime of fluorotelomer alcohols[J]. Environmental Science & Technology, 2003, 37(17):3816-3820.
    [25] SU Y S, WANIA F. Does the forest filter effect prevent semivolatile organic compounds from reaching the Arctic?[J]. Environmental Science & Technology, 2005, 39(18):7185-7193.
    [26] VIERKE L, AHRENS L, SHOEIB M, et al. Air concentrations and particle-gas partitioning of polyfluoroalkyl compounds at a wastewater treatment plant[J]. Environmental Chemistry, 2011, 8(4):363-371.
    [27] KAISER M A, LARSEN B S, KAO C P C, et al. Vapor pressures of perfluorooctanoic, -nonanoic, -decanoic, -undecanoic, and -dodecanoic acids[J]. Journal of Chemical & Engineering Data, 2005, 50(6):1841-1853.
    [28] STEELE W V, CHIRICO R D, KNIPMEYER S E, et al. Vapor pressure, heat capacity, and density along the saturation line:Measurements for benzenamine, butylbenzene, sec-butylbenzene, tert-butylbenzene, 2,2-dimethylbutanoic acid, tridecafluoroheptanoic acid, 2-butyl-2-ethyl-1,3-propanediol, 2,2,4-trimeth[J]. Journal of Chemical & Engineering Data, 2002, 47(4):648-666.
    [29] WANG T, WANG Y, LIAO C, et al. Perspectives on the inclusion of perfluorooctane sulfonate into the stockholm convention on persistent organic pollutants[J]. Environmental Science & Technology, 2009, 43(14):5171-5185.
    [30] WANG X P, GONG P, YAO T D, et al. Passive air sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers across the tibetan plateau[J]. Environmental Science & Technology, 2010, 44(8):2988-2993.
    [31] CAI Y, WANG X, WU Y, et al. Temporal trends and transport of perfluoroalkyl substances (PFASs) in a subtropical estuary:Jiulong River Estuary, Fujian, China[J]. Science of the Total Environment, 2018, 639:263-270.
    [32] CHEN S, JIAO X C, GAI N, et al. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China[J]. Environmental Pollution, 2016, 211:124-131.
    [33] LU G H, YANG Y L, TANIYASU S, et al. Potential exposure of perfluorinated compounds to Chinese in Shenyang and Yangtze River Delta areas[J]. Environmental Chemistry, 2011, 8(4):407-418.
    [34] PAN C G, YING G G, LIU Y S, et al. Contamination profiles of perfluoroalkyl substances in five typical rivers of the Pearl River Delta region, South China[J]. Chemosphere, 2014, 114:16-25.
    [35] PAN C G, YING G G, ZHAO J L, et al. Spatiotemporal distribution and mass loadings of perfluoroalkyl substances in the Yangtze River of China[J]. Science of the Total Environment, 2014, 493:580-587.
    [36] SHAO M, DING G, ZHANG J, et al. Occurrence and distribution of perfluoroalkyl substances (PFASs) in surface water and bottom water of the Shuangtaizi Estuary, China[J]. Environmental Pollution, 2016, 216:675-681.
    [37] 朴海涛, 陈舒, 焦杏春, 等. 大运河丰水期水体中全氟化合物的分布[J]. 中国环境科学, 2016, 36(10):3040-3047.

    PIAO H T, CHEN S, JIAO X C, GAI N, et al. Geographical distribution of perfluorinated compounds in waters along the Grand Canal during wet season[J]. China Environmental Science.,2016, 36(10):3040-3047(in Chinese).

    [38] NAILE J E, KHIM J S, WANG T, et al. Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea[J]. Environmental Pollution, 2010, 158(5):1237-1244.
    [39] WEI C, WANG Q, SONG X, et al. Distribution, source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas[J]. Ecotoxicology and Environmental Safety, 2018, 152:141-150.
    [40] MURAKAMI M, TAKADA H. Perfluorinated surfactants (PFSs) in size-fractionated street dust in Tokyo[J]. Chemosphere, 2008, 73(8):1172-1177.
    [41] GAI N, PAN J, TANG H, et al. Organochlorine pesticides and polychlorinated biphenyls in surface soils from Ruoergai high altitude prairie, east edge of Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2014, 478:90-97.
    [42] GAI N, PAN J, TANG H, et al. Selected organochlorine pesticides and polychlorinated biphenyls in atmosphere at Ruoergai high altitude prairie in eastern edge of Qinghai-Tibet Plateau and their source identifications[J]. Atmospheric Environment, 2014, 95:89-95.
    [43] 杜华明. 若尔盖湿地水资源水环境问题研究[D]. 成都:四川师范大学, 2007. DU H M. Study on water resource and water environment problem of ruoergai wetland[D]. Chengdu:Sichuan Normal University, 2007(in Chinese).
    [44] 张亚辉, 曹莹, 周腾耀, 等. 我国环境中PFOS的预测无效应浓度[J]. 中国环境科学, 2013, 33(9):1670-1677.

    ZHANG Y H, CAO Y, ZHOU T Y, et al. Predicted non-effect concentrations for PFOS of environment in China[J]. China Environmental Science, 2013, 33(9):1670-1677(in Chinese).

    [45] 曹莹, 周腾耀, 刘秀华, 等. 我国环境中全氟辛酸(PFOA)的预测无效应浓度推导[J]. 环境化学, 2013, 32(7):1180-1187.

    CAO Y, ZHOU T Y, LIU X H, et al. Predicted non-effect concentrations of perfluorooctanoic acid (PFOA) in the environment of China[J]. Environmental Chemistry, 2013, 32(7):1180-1187(in Chinese).

    [46] VALSECCHI S, CONTI D, CREBELLI R, et al. Deriving environmental quality standards for perfluorooctanoic acid (PFOA) and related short chain perfluorinated alkyl acids[J]. Journal of Hazardous Materials, 2017, 323:84-98.
    [47] TSUI M M P, LEUNG H W, WAI T C, et al. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries[J]. Water Research, 2014, 67:55-65.
  • 加载中
计量
  • 文章访问数:  2294
  • HTML全文浏览数:  2294
  • PDF下载数:  88
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-15

青藏高原东部过渡区水环境中全氟化合物的分布特征

    通讯作者: 路国慧, E-mail: guohui-lu@hotmail.com ;  赵全升, E-mail: zqs0811@sina.com
  • 1. 青岛大学环境科学与工程学院, 青岛, 266071;
  • 2. 国家地质实验测试中心, 北京, 100037
基金项目:

国家自然科学基金(41673022)资助.

摘要: 为探究高原过渡区水环境中全氟化合物(perfluorinated compounds,PFCs)的污染状况,以青藏高原东部过渡区典型高山峡谷区、若尔盖草原湿地区为研究区,应用固相萃取结合高效液相色谱-电喷雾负电离源串联质谱的方法对研究区内的降雪样品、河水和草原湿地地表径流样品中的全氟化合物进行测定.降雪样品中平均∑PFCs浓度为6266 pg·L-1,共检出11种PFCs,其中PFBA含量最高,表明该地区的大气中存在着以PFBA为主的PFCs污染.河水样品中检测到7种PFCs,高山峡谷区河水样品中ΣPFCs浓度范围为272—2244 pg·L-1,若尔盖草原湿地区河水样品中ΣPFCs浓度范围为727—5149 pg·L-1,远低于我国东部地区及长江黄河下游区域.若尔盖草原湿地地表径流样品检测出11种PFCs,∑PFCs浓度范围为5837—13720 pg·L-1,高于当地河水中PFCs的浓度,表明地表径流是当地河水中PFCs不可忽略的非点源污染源.运用熵值法得到青藏高原东部过渡区河水中PFOA、PFOS及PFBA的风险值均远低于参考值,未达到对生态环境具有风险的水平.

English Abstract

参考文献 (47)

目录

/

返回文章
返回