重金属对药物和个人护理品在土壤/沉积物中吸附的影响机制:现状与展望

唐钰, 段艳平, 涂耀仁, 智伟迪, 刘靳, 张浩, 张智博, 罗鹏程, 林彤. 重金属对药物和个人护理品在土壤/沉积物中吸附的影响机制:现状与展望[J]. 环境化学, 2021, (1): 164-173. doi: 10.7524/j.issn.0254-6108.2019091902
引用本文: 唐钰, 段艳平, 涂耀仁, 智伟迪, 刘靳, 张浩, 张智博, 罗鹏程, 林彤. 重金属对药物和个人护理品在土壤/沉积物中吸附的影响机制:现状与展望[J]. 环境化学, 2021, (1): 164-173. doi: 10.7524/j.issn.0254-6108.2019091902
TANG Yu, DUAN Yanping, TU Yaojen, ZHI Weidi, LIU Jin, ZHANG Hao, ZHANG Zhibo, LUO Pengcheng, LIN Tong. The effects mechanism of heavy metals on the adsorption of PPCPs in soils/sediments: Status and prospects[J]. Environmental Chemistry, 2021, (1): 164-173. doi: 10.7524/j.issn.0254-6108.2019091902
Citation: TANG Yu, DUAN Yanping, TU Yaojen, ZHI Weidi, LIU Jin, ZHANG Hao, ZHANG Zhibo, LUO Pengcheng, LIN Tong. The effects mechanism of heavy metals on the adsorption of PPCPs in soils/sediments: Status and prospects[J]. Environmental Chemistry, 2021, (1): 164-173. doi: 10.7524/j.issn.0254-6108.2019091902

重金属对药物和个人护理品在土壤/沉积物中吸附的影响机制:现状与展望

    通讯作者: 段艳平, E-mail: duanyanping@shnu.edu.cn
  • 基金项目:

    国家自然科学基金(41601514),上海市自然科学基金(17ZR1420700)和科技部国家重点研发计划(2016YFC0502706)资助.

The effects mechanism of heavy metals on the adsorption of PPCPs in soils/sediments: Status and prospects

    Corresponding author: DUAN Yanping, duanyanping@shnu.edu.cn
  • Fund Project: Supported by National Natural Science Foundation of China (41601514),Shanghai Natural Science Foundation (17ZR1420700) and Ministry of Science and Technology National Key Research and Development Program (2016YFC0502706).
  • 摘要: 药物和个人护理品简称(PPCPs)是一类具有潜在累积效果的环境污染物,其广泛分布于水体与土壤环境中.在土壤/沉积物中,PPCPs将发生一系列的物理、化学和生物作用,其中吸附是PPCPs在土壤/沉积物中极为关键的环境行为,将影响PPCPs在环境中的迁移转化及其对生物体的危害程度.重金属作为一类常见的无机污染物,它们的存在会影响PPCPs在土壤/沉积物表面的吸附行为,对土壤/沉积物吸附PPCPs的吸附效果造成不同影响.本文归纳总结了重金属存在时,PPCPs在土壤/沉积物中的吸附机理,综合探讨了PPCPs官能团组成、重金属离子类型、pH、离子强度和有机质等因素对PPCPs吸附的影响,并针对以往研究存在的问题进行了展望.
  • 加载中
  • [1] 孙莹. 重金属-有机污染物复合污染土壤修复工程实例[J]. 环境卫生工程, 2019, 27(3):57-60.

    SUN Y. Examples of remediation projects of heavy metals and organic pollutants co-contaminated soil[J]. Environmental Sanitation Engineering, 2019, 27(3):57-60(in Chinese).

    [2] AHMED K, ERIC P, AMINE E, et al. Assessment of the genotoxicity of antibiotics and chromium in primary sludge and compost using Vicia faba micronucleus test[J]. Ecotoxicology and Environmental Safety, 2019, 185(12):109693. doi:10.1016/j.ecoenv.2019.109693.
    [3] LIU S H, ZENG G M, NIU Q Y, et al. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi[J]. Bioresource Technology, 2017, 224:25-33.
    [4] WANG J D, PENG J P, TAN Z, et al. Microplastics in the surface sediments from the Beijiang River littoral zone:Composition, abundance, surface textures and interaction with heavy metals[J]. Chemosphere, 2017, 171:248-258.
    [5] MILLER E L, NASON S L, KARTHIKEYAN K G, et al. Root uptake of pharmaceutical and personal care product ingredients[J]. Environmental Science & Technology, 2015, 50(2):525-541.
    [6] WILKINSON J L, HOODA P S, SWINDEN J, et al. Spatial distribution of organic contaminants in three rivers of Southern England bound to suspended particulate material and dissolved in water[J]. Science of the Total Environment, 2017, 593/594:487-497.
    [7] DAUGHTON C G, TEMES T A. Pharmaceuticals and personal care products in the environment:Agents of subtle change?[J]. Environmental Health Perspectives, 1999, 107(suppl 6):907-938.
    [8] MARTA C, FRANCISCO O, JUAN M L, et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant[J]. Water Research, 2004, 38:2918-2926.
    [9] FABBRI, ELENA. Pharmaceuticals in the environment:Expected and unexpected effects on aquatic fauna[J]. Annals of the New York Academy of Sciences, 2015, 1340(1):20-28.
    [10] YANG W, YU C, MEI Y, et al. Occurrence of selected PPCPs and sulfonamide resistance genes associated with heavy metals pollution in surface sediments from Chao Lake, China[J]. Environmental Earth Sciences, 2016, 75(1):1-8.
    [11] ZHANG P W, ZHAO G F, ZHOU H D, et al. Simultaneous determination of 10 PPCPs in sediments using ultrasound extraction and HPLC-MS/MS[J]. Environmental Monitoring in China, 2014, 30(1):138-143.
    [12] WILKINSON J, HOODA P S, BARKER J, et al. Occurrence, fate and transformation of emerging contaminants in water:An overarching review of the field[J]. Environmental Pollution, 2017, 231:954-970.
    [13] LIU J L, WONG M H. Pharmaceuticals and personal care products (PPCPs):A review on environmental contamination in China[J]. Environment International, 2013, 59:208-224.
    [14] BU Q W, WANG B, HUANG J, et al. Pharmaceuticals and personal care products in the aquatic environment in China[J]. Journal of Hazardous Materials, 2013, 262:189-211.
    [15] KLOSTERHAUS S L, GRACE R, HAMILTON M C, et al. Method validation and reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary[J]. Environment International, 2013, 54(Complete):92-99.
    [16] ROSE-MICHELLE S, SAYEN STEPHANIE, NICOLAS N, et al. Combining sorption experiments and time of flight secondary ion mass spectrometry (ToF-SIMS) to study the adsorption of propranolol onto environmental solid matrices-Influence of copper(Ⅱ)[J]. Science of the Total Environment, 2018, 639:841-851.
    [17] ZHANG L, CHEN R H, LIU Y, et al. Influence of metal ions on sulfonamide antibiotics biochemical behavior in fiber coexisting system[J]. Journal of Environmental Sciences, 2019, 80(6):267-276.
    [18] AHMED M J, HAMEED B H. Insights into the isotherm and kinetic models for the coadsorption of pharmaceuticals in the absence and presence of metal ions[J]. Journal of Environmental Management, 2019, 252:109617. doi:10.1016/j.jenvman.2019.109617.
    [19] ZHANG Y, CAI X Y, LANG X M, et al. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal:Complexation versus mixture[J]. Environmental Pollution, 2012, 166:48-56.
    [20] PUNAMIYA P, SARKAR D, RAKSHIT S, et al. Effect of solution properties, competing ligands, and complexing metal on sorption of teracyclines on Al-based drinking water treatment residuals[J]. Environmental Science and Pollution Research, 2015, 22(10):7508-7518.
    [21] GU X, TAN Y, TONG F, et al. Surface complexation modeling of coadsorption of antibiotic ciprofloxacin and Cu(Ⅱ) and onto goethite surfaces[J]. Chemical Engineering Journal, 2015, 269:113-120.
    [22] 叶健清, 江鑫芊, 王子涵, 等. 土壤/沉积物吸附抗生素的机理及影响因素研究进展[J]. 台州学院学报, 2016, 38(6):28-34.

    YE J Q, JIANG X Q, WANG Z H, et al. Adsorption mechanism and its affecting factors of antibiotics in soils/sediments[J]. Journal of Taizhou University, 2016, 38(6):28-34(in Chinese).

    [23] ZHAO N, ZHAO C F, LV Y Z, et al. Adsorption and coadsorption mechanisms of Cr(VI) and organic contaminants on H3PO4 treated biochar[J]. Chemosphere, 2017, 186:442-429.
    [24] ZHOU Y Y, HE Y Z, XIANG Y J, et al. Single and simultaneous adsorption of pefloxacin and Cu(Ⅱ) ions from aqueous solutions by oxidized multiwalled carbon nanotube[J]. Science of the Total Environment, 2019, 646:29-36.
    [25] 周东美, 王慎强, 陈怀满. 土壤中有机污染物-重金属复合污染的交互作用[J]. 土壤与环境, 2000, 9(2):143-145.

    ZHOU D M, WANG S Q, CHEN H M. Interaction of organic pollutants and heavymetal in soil[J]. Ecology and Environmental Sciences, 2000, 9(2):143-145(in Chinese).

    [26] 黄文飞. 复合污染体系中, 重金属和有机物在沉积物上的吸附行为[D]. 杭州:浙江大学, 2007. HUANG W F. Sortpion of heavy metal and organic onto sediment in multi-solute system[D]. Hangzhou:Zhejiang University, 2007(in Chinese).
    [27] MA J, XIONG Y C, DAI X H, et al. Coadsorption behavior and mechanism of ciprofloxacin and Cu(Ⅱ) on graphene hydrogel wetted surface[J]. Chemical Engineering Journal, 2020, 380:122387. doi:10.1016/j.cej.2019.122387.
    [28] MELANIE K, GABRIEL S, XIAO F, et al. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials[J]. Water Research, 2017, 124:673-692.
    [29] WANG Z Y, DUAN L, ZHU D Q, et al. Effects of Cu(Ⅱ) and Ni(Ⅱ) ions on adsorption of tetracycline to functionalized carbon nanotubes[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(8):653-661.
    [30] WU D, PAN B, WU M, et al. Coadsorption of Cu and sulfamethoxazole on hydroxylized and graphitized carbon nanotubes[J]. Science of the Total Environment, 2012, 427/428:247-252.
    [31] 陈悦, 史静, 杜琼, 等. 洛美沙星和镁离子共存体系下载锆生物炭的吸附特性[J].科学技术与工程, 2019, 19(18):375-379.

    CHEN Y, SHI J, DU Q, et al. Adsorption of lomefloxacin and magnesium ions by zirconium-loaded biochar in the binary system[J]. Science Technology and Engineering, 2019, 19(18):375-379(in Chinese).

    [32] PAPAIOANNOU D, KOUKOULAKIS P H, LAMBROPOULOU D, et al. The dynamics of the pharmaceutical and personal care product interactive capacity under the effect of artificial enrichment of soil with heavy metals and of wastewater reuse[J]. The Science of the Total Environment, 2019, 662:537-546.
    [33] 徐景华, 金阳. 两性物质溶液pH计算[J]. 大学化学, 2006, 21(2):65-69.

    XU J H, JIN Y. Amphoteric solution pH calculation[J]. University Chemistry, 2006, 21(2):65-69(in Chinese).

    [34] 曾巧云, 丁丹, 檀笑. 中国农业土壤中四环素类抗生素污染现状及来源研究进展[J]. 生态环境学报, 2018, 27(9):1774-1782.

    ZENG Q Y, DING D, TAN X. Pollution status and sources of tetracycline antibiotics in agricultural soil in China[J]. Ecology and Environmental Sciences, 2018, 27(9):1774-1782(in Chinese).

    [35] MENG L, LAN C W, LIU Z H, et al. A novel ratiometric fluorescence probe for highly sensitive and specific detection of chlorotetracycline among tetracycline antibiotics[J]. Analytica Chimica Acta, 2019, 1089:144-151.
    [36] MACKAY A A, CANTERBURY B. Oxytetracycline sorption to organic matter by metal-bridging[J]. Journal of Environment Quality, 2005, 34(6):1964-1971.
    [37] GU C, KARTHIKEYAN K G, SIBLEY S D, et al. Complexation of the antibiotic tetracycline with humic acid[J]. Chemosphere, 2007, 66(8):1494-1501.
    [38] ZHOU Y Y, LIU X C, XIAGN Y J, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution:adsorption mechanism and modelling[J]. Bioresource Technology, 2017, 245:266-273.
    [39] ZHANG Z, SUN K, GAO B, et al. Adsorption of tetracycline on soil and sediment:Effects of pH and the presence of Cu(Ⅱ)[J]. Journal of Hazardous Materials, 2011, 190(1/3):856-862.
    [40] ZHANG G, LIU X, SUN K, et al. Sorption of tetracycline to sediments and soils:Assessing the roles of pH, the presence of cadmium and properties of sediments and soils[J]. Frontiers of Environmental Science & Engineering, 2010, 4(4):421-429.
    [41] CHITESCU C L, NICOLAU A I, STOLKER A A M. Uptake of oxytetracycline, sulfamethoxazole and ketoconazole from fertilised soils by plants[J]. Food Additives & Contaminants:Part A, 2013, 30(6):1138-1146.
    [42] PILS J R V, LAIRD D A. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes[J]. Environmental Science & Technology, 2007, 41(6):1928-1933.
    [43] 宋现财. 四环素类抗生素在活性污泥上的吸附规律及其机理研究[D]. 天津:南开大学, 2014. SONG X C. Investigate the law of adsorption of tetracyclines on active sludge and explore the mechanism[D]. Tianjin:Nankai University, 2014(in Chinese).
    [44] 张学政, 李帷, 李艳霞, 等.抗生素环境行为及特征研究进展[C]//持久性有机污染物论坛2008暨第三届持久性有机污染物全国学术研讨会论文集, 2008. ZHANG X Z, LI W, LI Y X, et al. Advances in research on environmental behavior and characteristics of antibiotics[C]//Proceedings of the Persistent Organic Pollutants Forum 2008 and the 3rd National Symposium on Persistent Organic Pollutants,2008

    (in Chinese).

    [45] MOREL M C, SPADINI L, BRIMO K, et al. Speciation study in the sulfamethoxazole-copper-pH-soil system:Implications for retention prediction[J]. Science of the Total Environment, 2014, 481:266-273.
    [46] 毛真, 吴敏, 张迪, 等. 磺胺甲恶唑在土壤上的吸附及其与Ca2+、Mg2+、Zn2+的共吸附[J]. 环境化学, 2013, 32(4):640-645.

    MAO Z, WU M, ZHANG D, et al. Adsorption behavior of sulfamethoxazole on 11 soils and its co-adsorption with Ca2+, Mg2+ or Zn2+[J]. Environmental Chemistry, 2013, 32(4):640-645(in Chinese).

    [47] SPARKS D L. Environmental Soil Chemistry[M](Second Edition). San Diego, USA:Academic Press, 2003:115-186.
    [48] 唐婷. 磺胺二甲基嘧啶与常见重金属的络合及其对镉在针铁矿上吸附行为的影响[D]. 广州:华南理工大学, 2016. TANG T. Interactions of sulfamethazine with selected heavy metals and the influence on Cd(Ⅱ) sorption onto goethite[D]. Guangzhou:South China University of Technology, 2016(in Chinese).
    [49] 辛凯, 马永恒, 董秉直. 不同有机物组分对膜污染影响的中试研究[J]. 给水排水, 2011, 47(1):123-130.

    XIN K, MA Y H, DONG B Z. Pilot experient on the influences of different fractions of NOM on membrane fouling[J]. Water & Wastewater Engineering, 2011, 47(1):123-130(in Chinese).

    [50] 韩兰芳, 孙可, 康明洁, 等. 有机质官能团及微孔特性对疏水性有机污染物吸附的影响机制[J]. 环境化学, 2014, 33(11):1811-1820.

    HAN L F, SUN K, KANG M J, et al. Influence of functional groups and pore characteristics of organic matter on the sorption of hydrophobic organic pollutants[J]. Environmental Chemistry, 2014, 33(11):1811-1820(in Chinese).

    [51] 林龙利, 刘国光, 杨敏建, 等. 负载型TiO2纳米管对水体中萘普生光催化作用[J]. 环境工程学报, 2016, 10(5):2201-2206.

    LIN L L, LIU G G, YANG M J, et al. Photocatalysis of naproxen in water over TiO2 nanotube supported on polyurethane membrane[J]. Chinese Journal of Environmental Engineering, 2016, 10(5):2201-2206(in Chinese).

    [52] 孔青青, 张祥丹, 李富华, 等. 水环境中卤素离子和HCO3-对氯贝酸光降解的影响研究[J]. 工业安全与环保, 2017, 43(7):72-74

    ,88. KONG Q Q, ZHANG X D, LI F H, et al. Influence of halide Ions and bicarbonate on degradation of chloride acid in aqueous media[J]. Industrial Safety and Environmental Protection, 2017, 43(7):72-74,88(in Chinese).

    [53] MAREEN G B, SAYEN, STEPHANIE, et al. Adsorption and co-adsorption of diclofenac and Cu(Ⅱ) on calcareous soils[J]. Ecotoxicology & Environmental Safety, 2015, 124:386.
    [54] PEI Z, SHAN X Q, KONG J, et al. Coadsorption of ciprofloxacin and Cu(Ⅱ) on montmorillonite and kaolinite as affected by solution pH[J]. Environmental Science & Technology, 2010, 44(3):915-920.
    [55] MAREEN G B, SAYEN, STEPHANIE, et al. Macroscopic and molecular approaches of enrofloxacin retention in soils in presence of Cu(Ⅱ)[J]. Journal of Colloid and Interface Science, 2013, 408:191-199.
    [56] 翟羽佳. 纳米水合二氧化锰吸附有机物/镉复合污染物机制研究[D]. 北京:北京林业大学, 2015. ZHAI Y J. Adsorption mechanism of organic matters/Cd(Ⅱ) composite pollutants by hydrous manganese dioxide[D]. Beijing:Beijing Forestry University, 2015(in Chinese).
    [57] 王开琦, 王蕾, 潘纲. 苦草对沉积物中三氯生去除的影响[J]. 环境保护科学, 2019, 45(4):29-35.

    WANG K Q, WANG L, PAN G. Effect of vallisneria natans on the removal of triclosan in sediments[J]. Environmental Protection Science, 2019, 45(4):29-35(in Chinese).

    [58] 陈源波. 三价离子对鼠里糖脂作用下三氯生在底泥-水中分配的影响[J]. 环境与发展, 2018, 30(1):120-122.

    CHEN Y B. Tervalence cations on the rhamnolipid functioned distribution of triclosan in sediment-water system[J]. Environment and Development, 2018, 30(1):120-122(in Chinese).

    [59] 孟迪, 陈红, 薛罡. 典型PPCPs与纳米铜颗粒理化性质的交互影响[J]. 化工学报, 2016, 67(10):4455-4460.

    MENG D, CHEN H, XUE G. Interaction effects of typical PPCPs and copper nanoparticles on physical-chemical properties[J]. CIESC Journal, 2016, 67(10):4455-4460(in Chinese).

    [60] 叶伟莹. 双酚A毒理效应研究进展[J]. 广东化工, 2015, 42(2):87-88

    ,94. YE W Y. Summary on the toxicological effect of bisphonel A[J]. Guangdong Chemical Industry, 2015, 42(2):87-88,94(in Chinese).

    [61] 李金花. 共存污染物对三种有机物在土壤/沉积物上吸附行为影响的研究[D]. 上海:上海交通大学, 2008. LI J H. Study on the effect of coexisting contaminants on sorption of three organic contaminants in soils/sediments[D]. Shanghai:Shanghai Jiao Tong University, 2008(in Chinese).
    [62] 黄翔峰, 熊永娇, 彭开铭, 等. 金属离子络合对抗生素去除特性的影响研究进展[J]. 环境化学, 2016, 35(1):133-140.

    HUANG X F, XIONG Y J, PENG K M, et al. The progress of antibiotics removal performance under the complexion effect of metal ions[J]. Environmental Chemistry, 2016, 35(1):133-140(in Chinese).

    [63] TOMMASINO J B, RENAUD F N R, LUNEAU D, et al. Multi-biofunctional complexes combining antiseptic copper(Ⅱ) with antibiotic sulfonamide ligands:Structural, redox and antibacterial study[J]. Polyhedron, 2011, 30(10):1663-1670.
    [64] TUREL I. The interactions of metal ions with quinolone antibacterial agents[J]. Coordination Chemistry Reviews, 2002, 232(1):27-47.
    [65] LAMBS L, REVEREND D L, KOZLOWSKI H, et al. Metal ion-tetracycline interactions in biological fluids. 9. Circular dichroism spectra of calcium and magnesium complexes with tetracycline, oxytetracycline, doxycycline, and chlortetracycline and discussion of their binding modes[J]. Inorganic Chemistry, 1988, 27(17):3001-3012.
    [66] 汪晨. 水中典型药物与重金属的络合行为[D]. 南京:东南大学, 2016. WANG C. Complexation behavior of typical pharmaceutical antibiotics and heavy metals in water[D]. Nanjing:Southeast University, 2016(in Chinese).
    [67] BRILLAULT J, TEWES F, COUET W, et al. In vitro biopharmaceutical evaluation of ciprofloxacin/metal cation complexes for pulmonary administration[J]. European Journal of Pharmaceutical Sciences, 2017, 97:92-98.
    [68] 荚德安. 土壤中四环素与铜的吸附行为及其影响因素研究[D]. 哈尔滨:哈尔滨工程大学, 2008. JIA D A. Study of adsorption of tetracycline and copper in soils and impact of factors on their adsorption[D]. Harbin:Harbin Engineering University, 2008(in Chinese).
    [69] AGWUH K N. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines[J]. Journal of Antimicrobial Chemotherapy, 2006, 58(2):256-265.
    [70] GARRETT E R. Variation of pKa'-values of tetracyclines in dimethylformamide-water solvents[J]. Journal of Pharmaceutical Science, 1963, 52(8):797-799.
    [71] FIGUEROA R A, LEONARD A, Mackay A A. Modeling tetracycline antibiotic sorption to clays[J]. Environmental Science & Technology, 2004, 38(2):476-483.
    [72] GU C, KARTHIKEYAN K G. Interaction of tetracycline with aluminum and iron hydrous oxides[J]. Environmental Science & Technology, 2005, 39(8):2660-2667.
    [73] SASSMAN S A, LEE L S. Sorption of three tetracyclines by several soils:Assessing the role of pH and cation exchange[J]. Environmental Science & Technology, 2005, 39(19):7452-7459.
    [74] 葛成军, 俞花美, 黄占斌. Cu、Zn对兽药土霉素在热带土壤中吸附行为的影响[J]. 江苏农业科学, 2013, 41(1):352-354.

    GE C J, YU H M, HUANG Z B. Effect of Cu and Zn on adsorption behavior of veterinary drug oxytetracycline in tropical soil[J]. Jiangsu Agricultural Sciences, 2013, 41(1):352-354(in Chinese).

    [75] KULSHRESTHA P, GIESE R F, AGA D S. Investigating the molecular interactions of oxytetracycline in clay and organic matter:Insights on factors affecting its mobility in soil[J]. Environmental Science & Technology, 2004, 38(15):4097-4105.
    [76] 吴志坚, 刘海宁, 张慧芳. 离子强度对吸附影响机理的研究进展[J]. 环境化学, 2010, 29(6):997-1003.

    WU Z J, LIU H N, ZHANG H F. Research progress on mechanisms about the effect of ionic strength on adsorption[J]. Environmental Chemistry, 2010, 29(6):997-1003(in Chinese).

    [77] 陈炳发, 吴敏, 张迪, 等. 土壤无机矿物对抗生素的吸附机理研究进展[J]. 化工进展, 2012, 31(1):193-200.

    CHEN B F, WU M, ZHANG D, et al. Research advance in sorption mechanisms of antibiotics in soil inorganic minerals[J]. Chemical Industry and Engineering Progress, 2012, 31(1):193-200(in Chinese).

    [78] 张劲强, 董元华. 阳离子强度和阳离子类型对诺氟沙星土壤吸附的影响[J].环境科学, 2007,28(10):2383-2388.

    ZHANG J Q, DONG Y H. Influence of strength and species of cation on adsortion of norfloxacin in typical soils of China[J]. Environmental Science, 2007,28(10):2383-2388(in Chinese).

    [79] WANG Y J, JIA D A, SUN R J, et al. Adsorption and cosorption of tetracycline and copper(Ⅱ) on montmorillonite as affected by solution pH[J]. Environmental Science & Technology, 2008, 42(9):3254-3259.
    [80] CUPRYS A, PULICHARLA R, LECKA J, et al. Ciprofloxacin-metal complexes -stability and toxicity tests in the presence of humic substances[J]. Chemosphere, 2018, 202:549-559.
    [81] 明恋. 复合体系中溶解性有机质对铜和土霉素的吸附行为的影响研究[D]. 长春:吉林大学, 2014. MING L. Studies of the effect of DOM on the adsorption of Cu And OTC in combined system[D]. Changchun:Jilin University, 2014(in Chinese).
  • 加载中
计量
  • 文章访问数:  2111
  • HTML全文浏览数:  2111
  • PDF下载数:  51
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-19

重金属对药物和个人护理品在土壤/沉积物中吸附的影响机制:现状与展望

    通讯作者: 段艳平, E-mail: duanyanping@shnu.edu.cn
  • 1. 上海师范大学环境与地理科学学院, 上海, 200234;
  • 2. 上海师范大学城市发展研究院, 上海, 200234
基金项目:

国家自然科学基金(41601514),上海市自然科学基金(17ZR1420700)和科技部国家重点研发计划(2016YFC0502706)资助.

摘要: 药物和个人护理品简称(PPCPs)是一类具有潜在累积效果的环境污染物,其广泛分布于水体与土壤环境中.在土壤/沉积物中,PPCPs将发生一系列的物理、化学和生物作用,其中吸附是PPCPs在土壤/沉积物中极为关键的环境行为,将影响PPCPs在环境中的迁移转化及其对生物体的危害程度.重金属作为一类常见的无机污染物,它们的存在会影响PPCPs在土壤/沉积物表面的吸附行为,对土壤/沉积物吸附PPCPs的吸附效果造成不同影响.本文归纳总结了重金属存在时,PPCPs在土壤/沉积物中的吸附机理,综合探讨了PPCPs官能团组成、重金属离子类型、pH、离子强度和有机质等因素对PPCPs吸附的影响,并针对以往研究存在的问题进行了展望.

English Abstract

参考文献 (81)

目录

/

返回文章
返回