生物质炭微生物矿化稳定性机制研究进展

刘洁, 杨妍, 韩兰芳, 孙可. 生物质炭微生物矿化稳定性机制研究进展[J]. 环境化学, 2021, (1): 174-184. doi: 10.7524/j.issn.0254-6108.2020050604
引用本文: 刘洁, 杨妍, 韩兰芳, 孙可. 生物质炭微生物矿化稳定性机制研究进展[J]. 环境化学, 2021, (1): 174-184. doi: 10.7524/j.issn.0254-6108.2020050604
LIU Jie, YANG Yan, HAN Lanfang, SUN Ke. Research progress on the mechanism of microbial mineralization stability of biochar[J]. Environmental Chemistry, 2021, (1): 174-184. doi: 10.7524/j.issn.0254-6108.2020050604
Citation: LIU Jie, YANG Yan, HAN Lanfang, SUN Ke. Research progress on the mechanism of microbial mineralization stability of biochar[J]. Environmental Chemistry, 2021, (1): 174-184. doi: 10.7524/j.issn.0254-6108.2020050604

生物质炭微生物矿化稳定性机制研究进展

    通讯作者: 孙可, E-mail: sunke@bnu.edu.cn
  • 基金项目:

    国家自然科学基金创新研究群体项目(51721093)和北京市自然科学基金(JQ19033)资助.

Research progress on the mechanism of microbial mineralization stability of biochar

    Corresponding author: SUN Ke, sunke@bnu.edu.cn
  • Fund Project: Supported by the Innovative Research Group of the NationalNatural Science Foundation of China(51721093)and Beijing Natural Science Foundation(JQ19033).
  • 摘要: 生物质炭在碳封存和土壤改良等方面的应用潜力取决于其在土壤中的微生物矿化稳定性.明确生物质炭在土壤中微生物矿化稳定性是推进生物质炭在土壤固碳、改良等领域应用的关键.基于生物质炭在土壤中的微生物矿化稳定性研究进展,本文系统总结了不同类型生物质炭的微生物矿化速率和在土壤中的平均驻留时间,探讨了不同因素(生物质炭特性、土壤特性和外源不稳定有机质的添加等)对生物质炭微生物矿化稳定性的影响,阐述了生物分解过程中生物质炭的性质变化及其与土壤微生物/有机质/矿物质的交互作用,简述了生物质炭中内源矿物质和外源土壤矿物质对其矿化稳定性的影响机理.最后,总结现有研究的不足,并提出今后的研究重点.
  • 加载中
  • [1] LEHMANN J, JOSPHE S. Biochar for environmental management:Science and technology[M]. London:Earthscan, 2009.
    [2] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16):3324-3333.

    CHEN W F, ZHANG W M, MENG J. Advances and prospects in research of biochar utilization in agriculture[J].Scientia Agricultura Sinica, 2013, 46(16):3324-3333(in Chinese).

    [3] 徐振涛, 梁鹏, 吴胜春,等. 不同生物质炭对土壤中有效态汞的影响及其吸附特征分析[J]. 环境化学, 2019, 38(4):124-133.

    XU Z T, LIANG P, WU S C, et al.[J]. Effects of different biochar on the a vailable mercury in soil and characterization of Hg adsorption[J]. Environmental Chemistry, 2019, 38(4):124-133(in Chinese).

    [4] 陈灿,潘亚男, 王欣,等. 凤眼莲生物炭对稻田土壤肥力的影响[J]. 环境化学, 2017, 36(4):907-914.

    CHEN C, PAN Y N, WANG X, et al.Influence of water hyacinth biochar on retention of nutrition in paddy soils[J]. Environmental Chemistry, 2017, 36(4):907-914(in Chinese).

    [5] MURRAY J, KEITH A, SINGH B. The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy[J]. Soil Biology and Biochemistry, 2015, 89:217-225.
    [6] 刘玉学, 刘微, 吴伟祥, 等. 土壤生物质炭环境行为与环境效应[J]. 应用生态学报, 2009, 20(4):977-982.

    LIU Y X, LIU W, WU W X, et al. Environmental behavior and effect of biomass-derived black carbon in soil:A review.[J]. Chinese Journal of Applied Ecology, 2009, 20(4):977-982(in Chinese).

    [7] CALVELO PEREIRA R, CAMPS ARBESTRAIN M, KAAL J,et al. Detailed carbon chemistry in charcoals from pre-europeanmāori gardens of new Zealand as a tool for understanding biochar stability in soils[J]. European Journal of Soil Science, 2014,65(1):83-95.
    [8] FANG Y, SINGH B P, NAZARIES L,et al. Interactive carbon priming, microbial response and biochar persistence in a vertisol with varied inputs of biochar and labile organic matter[J]. European Journal of Soil Science, 2019, 70:960-974.
    [9] HAEFELE S M, KONBOON Y, WONGBOON W,et al. Effects and fate of biochar from rice residues inrice-based systems[J]. Field Crops Research, 2011,121(3):430-440.
    [10] ALLER M F. Biochar properties:Transport, fate, and impact[J]. Critical Reviews in Environmental Science and Technology, 2016,46(14/15):1183-1296.
    [11] 周丹丹, 吴文卫, 吴敏. 生物质炭的稳定性及其评价方法[J]. 重庆大学学报, 2015, 38(3):116-122.

    ZHOU D D, WU W W, WU M. Stability of biochar and its evaluating methods[J]. Journal of Chongqing University, 2015, 38(3):116-122(in Chinese).

    [12] BRODOWSKI S, AMELUNG W, HAUMAIER L,et al. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy[J]. Geoderma, 2005, 128(1/2):116-129.
    [13] FANG Y, SINGH B, SINGH B P, et al. Biochar carbon stability in four contrasting soils[J]. European Journal of Soil Science, 2014, 65(1):60-71.
    [14] HAN L, SUN K, YANG Y,et al. Biochar's stability and effect on the content, composition and turnover of soil organic carbon[J]. Geoderma, 2020,364:114184. DOI:10.1016/j.geoderma.2020.114184.
    [15] CHENG C, LEHMANN J, THIES J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37(11):1477-1488.
    [16] ZHU X, MAO L, CHEN B. Driving forces linking microbial community structure and functions to enhanced carbon stability in biochar-amended soil[J]. Environment International, 2019,133:105211. DOI:10.1016/j.envint.2019.105211.
    [17] ZIMMERMANN M, BIRD M I, WURSTER C, et al.Rapid degradation of pyrogenic carbon[J]. Global Change Biology, 2012, 18(11):3306-3316.
    [18] LIAN F, XING B. Black carbon (biochar) in water/soil environments:Molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51(23):13517-13532.
    [19] MASK O, BROWNSORT P, CROSS A, et al. Influence of production conditions on the yield and environmental stability of biochar[J]. Fuel, 2013, 103:151-155.
    [20] BRUUN E W, HAUGGAARD-NIELSEN H, IBRAHIM N, et al. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil[J]. Biomass and Bioenergy, 2011, 35(3):1182-1189.
    [21] GRUTZMACHER P, PUGA A P, BIBAR M P S,et al. Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar[J]. Science of the Total Environment, 2018, 625:1459-1466.
    [22] CHEN C, CHENG C, HUANG Y,et al. Converting leguminous green manure into biochar:changes in chemical composition and C and N mineralization[J]. Geoderma,2014,232/234:581-588.
    [23] POTTER M C. Bacteria as agents in the oxidation of amorphous carbon[J]. Proceedings of the Royal Society of London Series B, 1908, 539(80):239-259.
    [24] ZIMMERMAN A R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4):1295-1301.
    [25] SANTOS F, TORN M S, BIRD J A. Biological degradation of pyrogenic organic matter in temperate forest soils[J]. Soil Biology and Biochemistry, 2012, 51:115-124.
    [26] KEITH A, SINGH B, SINGH B P. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil[J]. Environmental Science & Technology, 2011, 45(22):9611-9618.
    [27] YIN Y, HE X, GAO R,et al. Effects of rice straw and its biochar addition on soil labile carbon and soil organic carbon[J]. Journal of Integrative Agriculture, 2014, 13(3):491-498.
    [28] FARRELL M, KUHN T K, MACDONALD L M,et al. Microbial utilisation of biochar-derived carbon[J]. Science of the Total Environment, 2013, 465:288-297.
    [29] HAMER U, MARSCHNER B, BRODOWSKI S, et al. Interactive priming of black carbon and glucose mineralisation[J]. Organic Geochemistry, 2004, 35(7):823-830.
    [30] LUO Y, DURENKAMP M, De NOBILI M,et al. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH[J]. Soil Biology and Biochemistry, 2011, 43(11):2304-2314.
    [31] KUZYAKOV Y, BOGOMOLOVA I, GLASER B. Biochar stability in soil:Decomposition during eight years and transformation as assessed by compound-specific 14C analysis[J]. Soil Biology and Biochemistry, 2014, 70:229-236.
    [32] KUZYAKOV Y, SOBBOTINA I, CHEN H,et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling[J]. Soil Biology and Biochemistry, 2009, 41(2):210-219.
    [33] MARESTRINI B, HERRMANN A M, NANNIPIERI P,et al. Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil[J]. Soil Biology and Biochemistry, 2014, 69:291-301.
    [34] SINGH B P, COWIE A L, SMERNIK R J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature[J]. Environmental Science & Technology, 2012, 46(21):11770-11778.
    [35] FANG Y, SINGH B, SINGH B P. Effect of temperature on biochar priming effects and its stability in soils[J]. Soil Biology and Biochemistry, 2015, 80:136-145.
    [36] HILSCHER A, HEISTER K, SIEWERT C,et al. Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil[J]. Organic Geochemistry, 2009, 40(3):332-342.
    [37] LIANG B, LEHMANN J, SOLOMON D,etal. Stability of biomass-derived black carbon in soils[J]. Geochimica Et Cosmochimica Acta, 2008, 72(24):6069-6078.
    [38] MAJOR J, LEHMANN J, RONDON M, et al. Fate of soil-applied black carbon:Downward migration, leaching and soil respiration[J]. Global Change Biology, 2010, 16(4):1366-1379.
    [39] XU H, GUAN D, ZOU L,et al. Contrasting effects of photochemical and microbial degradation on Cu(Ⅱ) binding with fluorescent DOM from different origins[J]. Environmental Pollution, 2018, 239:205-214.
    [40] ZIMMERMAN A R, OUYANG L. Priming of pyrogenic C (biochar) mineralization by dissolved organic matter and vice versa[J]. Soil Biology and Biochemistry, 2019,130:105-112.
    [41] PURAKAYASTHA T J, DAS K C, GASKIN J,et al. Effect of pyrolysis temperatures on stability and priming effects of C3 and C4 biochars applied to two different soils[J]. Soil and Tillage Research, 2016, 155:107-115.
    [42] WANG J, XIONG Z, KUZYAKOV Y. Biochar stability in soil:Meta-analysis of decomposition and priming effects[J]. Global Change Biology Bioenergy, 2016, 8(3):512-523.
    [43] LENG L, XU X, WEI L,et al. Biochar stability assessment by incubation and modelling:Methods, drawbacks and recommendations[J]. Science of the Total Environment, 2019,664:11-23.
    [44] CHAO L, ZHANG W D, WANG S L. Understanding the dominant controls on biochar decomposition using boosted regression trees[J]. European Journal of Soil Science, 2018,69(3):512-520.
    [45] BAI M, WILSKE B, BUEGGER F,et al. Degradation kinetics of biochar from pyrolysis and hydrothermal carbonization in temperate soils[J]. Plant and Soil, 2013,372(1/2):375-387.
    [46] MARCO G, CORA V, MIRJAM H,et al. Stability of pyrochar and hydrochar in agricultural soil-a new field incubation method[J]. Geoderma, 2016, 284:85-92.
    [47] BAMMINGER C, MARSCHNER B, JUSCHKE E. An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils[J]. European Journal of Soil Science, 2014, 65(1):72-82.
    [48] LANZA G, STANG A, KERN J, et al. Degradability of raw and post-processed chars in a two-year field experiment[J]. Science of the Total Environment, 2018,628/629:1600-1608.
    [49] FEOLA CONZ R, ABBRUZZINI T F, DE ANDRADE C A, et al. Effect of pyrolysis temperature and feedstock type on agricultural properties and stability of biochars[J]. Agricultural Sciences, 2017,8(9):914-933.
    [50] ABNEY R B, JIN L, BERHE A A. Soil properties and combustion temperature:Controls on the decomposition rate of pyrogenic organic matter[J]. Catena, 2019,182:104127. DOI:10.1016/j.catena.2019.104127.
    [51] WHITMAN T, HANLEY K, ENDERS A, et al. Predicting pyrogenic organic matter mineralization from its initial properties and implications for carbon management[J]. Organic Geochemistry, 2013,64:76-83.
    [52] LENG L, HUANG H. An overview of the effect of pyrolysis process parameters on biochar stability[J]. Bioresource Technology, 2018,270:627-642.
    [53] NGUYEN B T, LEHMANN J. Black carbon decomposition under varying water regimes[J]. Organic Geochemistry, 2009,40(8):846-853.
    [54] PURAKAYASTHA T J, KUMARI S, PATHAK H. Characterisation, stability, and microbial effects of four biochars produced from crop residues[J]. Geoderma, 2015, 239/240:293-303.
    [55] JINDO K, SONOKI T. Comparative assessment of biochar stability using multiple indicators[J]. Agronomy, 2019, 9(5):254. DOI:10.3390/agronomy9050254.
    [56] CHOUNHARY T K, KHAN K S, HUSSAIN Q, et al. Feedstock-induced changes in composition and stability of biochar derived from different agricultural wastes[J]. Arabian Journal of Geosciences, 2019, 12(19):617. DOI:10.1007/s12517-019-4735-z.
    [57] SIGUA G C, NOVAK J M, WATTS D W, et al. Carbon mineralization in two ultisols amended with different sources and particle sizes of pyrolyzedbiochar[J]. Chemosphere, 2014, 103:313-321.
    [58] LI F, CAO X, ZHAO L, et al. Effects of mineral additives on biochar formation:Carbon retention, stability, and properties[J]. Environmental Science & Technology, 2014,48(19):11211-11217.
    [59] ZHAO L, CAO X, ZHENG W, et al. Phosphorus-assisted biomass thermal conversion:Reducing carbon loss and improving biochar stability[J]. PLoS One, 2014, 9(12):e115373. DOI:10.1371/journal.pone.0115373.
    [60] NGUYEN B T, LEHMANN J, HOCKADAY W C, et al. Temperature sensitivity of black carbon decomposition and oxidation[J]. Environmental Science & Technology, 2010, 44(9):3324-3331.
    [61] BRUUN S, CLAUSON-KAAS S, BOBULSKA L, et al. Carbon dioxide emissions from biochar in soil:Role of clay, microorganisms and carbonates[J]. European Journal of Soil Science, 2014,65(1):52-59.
    [62] WOO S H, ENDERS A, LEHMANN J. Microbial mineralization of pyrogenic organic matter in different mineral systems[J]. Organic Geochemistry, 2016,98:18-26.
    [63] WU M, HAN X, ZHONG T, et al. Soil organic carbon content affects the stability of biochar in paddy soil[J]. Agriculture, Ecosystems & Environment, 2016, 223:59-66.
    [64] GIBSON C, HATTON P, BIRD J, et al. Interacting controls of pyrolysis temperature and plant taxa on the degradability of PyOM in fire-prone northern temperate forest soil[J]. Soil Systems, 2018,2(3):48. DOI:10.3390/soilsystems2030048.
    [65] ZAVALLONI C, ALBERTI G, BIASIOL S, et al. Microbial mineralization of biochar and wheat straw mixture in soil:A short-term study[J]. Applied Soil Ecology, 2011, 50:45-51.
    [66] CUI J, GE T, KUZYAKOV Y, et al. Interactions between biochar and litter priming:A three-source 14C and δ13C partitioning study[J]. Soil Biology and Biochemistry, 2017,104:49-58.
    [67] VENTURA M, ALBERTI G, VIGER M, et al. Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices[J]. Global Change Biology Bioenergy, 2015, 7(5):1150-1160.
    [68] VENTURA M, ALBERTI G, PANZACCHI P, et al. Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment[J]. Biology and Fertility of Soils, 2019, 55(1):67-78.
    [69] WU M, FENG Q, SUN X, et al. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil[J]. Scientific Reports, 2015,5(1):10001. DOI:10.1038/srep10001.
    [70] GURWICK N P, MOORE L A, KELLY C, et al. A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy[J]. PLoS One, 2013, 8(9):e75932. DOI:10.1371/journal.pone.0075932.
    [71] AMELOOT N, GRABER E R, VERHEIJEN F G A, et al. Interactions between biochar stability and soil organisms:Review and research needs[J]. European Journal of Soil Science, 2013, 64(4):379-390.
    [72] WARDLE D A, NILSSON M C, ZACKRISSON O. Fire-derived charcoal causes loss of forest humus[J]. Science, 2008, 320(5876):629-629.
    [73] BRODOWSKI S, JOHN B, FLESSA H, et al. Aggregate-occluded black carbon in soil[J]. European Journal of Soil Science, 2006, 57(4):539-546.
    [74] SINGH N, ABIVEN S, MAESTRINI B, et al. Transformation and stabilization of pyrogenic organic matter in a temperate forest field experiment[J]. Global Change Biology, 2014, 20(5):1629-1642.
    [75] TAN L, SUN C, WANG Y, et al. Changes in biochar properties in typical loess soil under a 5-year field experiment[J]. Journal of Soils and Sediments, 2020,20(1):340-351.
    [76] DONG X, LI G, LIN Q, et al. Quantity and quality changes of biochar aged for 5 years in soil under field conditions[J]. Catena, 2017,159:136-143.
    [77] DELA ROSA J M, ROSADO M, PANEQUE M, et al. Effects of aging under field conditions on biochar structure and composition:Implications for biochar stability in soils[J]. Science of the Total Environment, 2018, 613/614:969-976.
    [78] SINGH B, FANG Y, COWIE B C C, et al. NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars[J]. Organic Geochemistry, 2014,77:1-10.
    [79] RECHBERGER M V, KLOSS S, RENNHOFER H, et al. Changes in biochar physical and chemical properties:Accelerated biochar aging in an acidic soil[J]. Carbon, 2017, 115:209-219.
    [80] SORRENTI G, MASIELLO C A, DUGAN B, et al. Biocharphysico-chemical properties as affected by environmental exposure[J]. Science of the Total Environment, 2016,563/564:237-246.
    [81] DAS O, SARMAH A K. The love-hate relationship of pyrolysis biochar and water:A perspective[J]. Science of the Total Environment, 2015,512/513:682-685.
    [82] HEITKOTTER J, MARSCHNER B. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production[J]. Geoderma, 2015,245/246:56-64.
    [83] LI H, LU X, XU Y, et al. How close is artificial biochar aging to natural biochar aging in fields? A meta-analysis[J]. Geoderma, 2019,352:96-103.
    [84] TAN Z, LIN C S K, JI X, et al. Returning biochar to fields:A review[J]. Applied Soil Ecology, 2017, 116:1-11.
    [85] BUDAI A, RASSE D P, LAGOMARSINO A, et al. Biochar persistence, priming and microbial responses to pyrolysis temperature series[J]. Biology and Fertility of Soils, 2016, 52(6):749-761.
    [86] DAI Z, BARBERAN A, LI Y, et al.Bacterial community composition associated with pyrogenic organic matter (biochar) varies with pyrolysis temperature and colonization environment[J]. Msphere, 2017, 2(2):e00085-17. DOI:10.1128/mSphere.00085-17.
    [87] ZHANG L, JING Y, XIANG Y, et al. Responses of soil microbial community structure changes and activities to biochar addition:A meta-analysis[J]. Science of the Total Environment, 2018,643:926-935.
    [88] LI M, WANG Y, LIU M, et al. Three-year field observation of biochar-mediated changes in soil organic carbon and microbial activity[J]. Journal of Environmental Quality, 2019,48(3):717-726.
    [89] LANZA G, REBENSBURG P, KERN J, et al. Impact of chars and readily available carbon on soil microbial respiration and microbial community composition in a dynamic incubation experiment[J]. Soil and Tillage Research, 2016,164:18-24.
    [90] MENG C P, HANIF A H M, WAHID S A, et al. Short-term field decomposition and physico-chemical transformation of jatropha pod biochar in acidic mineral soil[J]. Open Journal of Soil Science, 2014, 4(7):226-234.
    [91] PITUELLO C, DAL FERRO N, FRANCIOSO O, et al. Effects of biochar on the dynamics of aggregate stability in clay and sandy loam soils[J]. European Journal of Soil Science, 2018,69(5):827-842.
    [92] KUMAR A, JOSEPH S, TSECHANSKY L, et al. Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties[J]. Science of the Total Environment, 2018,626:953-961.
    [93] SAFFARI N, HAJABBASI M A, SHIRANI H, et al. Biochar type and pyrolysis temperature effects on soil quality indicators and structural stability[J]. Journal of Environmental Management, 2020, 261:110190. DOI:10.1016/j.jenvman.2020.110190.
    [94] NGUYEN B T, LEHMANN J, KINYANGI J, et al. Long-term black carbon dynamics in cultivated soil[J]. Biogeochemistry, 2009, 92(1/2):163-176.
    [95] EL-NAGGAR A, AWAD Y M, TANG X, et al. Biochar influences soil carbon pools and facilitates interactions with soil:A field investigation[J]. Land Degradation & Development, 2018, 29(7):2162-2171.
    [96] JIANG X, TAN X, CHENG J, et al. Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubations[J]. Geoderma, 2019, 333:99-107.
    [97] WANG D, FONTE S J, PARIKH S J, et al. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates[J]. Geoderma, 2017, 303:110-117.
    [98] MUKHERJEE A, ZIMMERMAN A R, HAMDAN R, et al. Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging[J]. Solid Earth, 2014, 5(2):693-704.
    [99] VASILYEVA N A, ABIVEN S, MILANOVSKIY E Y, et al. Pyrogenic carbon quantity and quality unchanged after 55 years of organic matter depletion in a Chernozem[J]. Soil Biology and Biochemistry, 2011, 43(9):1985-1988.
    [100] GLASER B, BALASHOV E, HAUMAIER L, et al. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region[J].Organic Geochemistry, 2000, 31(7):669-678.
    [101] FERNANDEZ-UGALDE O, GARTZIA-BENGOETXEA N, AROSTEGI J, et al. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area[J]. Science of the Total Environment, 2017, 587/588:204-213.
    [102] LIN Y, MUNROE P, JOSEPH S, et al. Nanoscaleorgano-mineral reactions of biochars in ferrosol:An investigation using microscopy[J]. Plant and Soil, 2012, 357(1/2):369-380.
    [103] YANG F, ZHAO L, GAO B, et al. The interfacial behavior between biochar and soil minerals and its effect on biochar stability[J]. Environmental Science & Technology, 2016, 50(5):2264-2271.
    [104] HILSCHER A, KNICKER H. Degradation of grass-derived pyrogenic organic material, transport of the residues within a soil column and distribution in soil organic matter fractions during a 28month microcosm experiment[J]. Organic Geochemistry, 2011,42(1):42-54.
    [105] KNICKER H. Pyrogenic organic matter in soil:Its origin and occurrence, its chemistry and survival in soil environments[J]. Quaternary International, 2011, 243(2):251-263.
    [106] CAO T, CHEN W, YANG T, et al. Surface characterization of aged biochar incubated in different types of soil[J]. BioResources, 2017,12(3):6366-6377.
    [107] JOSEPH S, GRABER E R, CHIA C, et al. Shifting paradigms:development of high-efficiency biochar fertilizers based on nano-structures and soluble components[J]. Carbon Management, 2014, 4(3):323-343.
    [108] 朱华伟, 张延平, 李寅. 微生物电合成-电能驱动的CO2固定[J]. 中国科学:生命科学, 2016, 46(12):1388-1399.

    ZHU H W, ZHANG Y P, LI Y. Microbial electrosynthesis:CO2 fixation driven by electricity[J].ScientiaSinica Vitae, 2016,46(12):1388-1399(in Chinese).

    [109] 王莹, 刘同旭, 李芳柏. 微生物-矿物间半导体介导电子传递机制研究进展[J]. 地球科学进展, 2016, 31(4):347-356.

    WANG Y,LIU T X,LI F B.Advances in the semiconductor-mediated electron transfer mechanism at microbe-mineral interface[J].Advances in Earth Science, 2016, 31(4):347-356(in Chinese).

    [110] DELA ROSA J M, MILLER A Z, KNICKER H. Soil-borne fungi challenge the concept of long-term biochemical recalcitrance of pyrochar[J]. Scientific Reports, 2018, 8(1):2896. DOI:10.1038/s41598-018-21257-5.
  • 加载中
计量
  • 文章访问数:  3899
  • HTML全文浏览数:  3899
  • PDF下载数:  119
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-06

生物质炭微生物矿化稳定性机制研究进展

    通讯作者: 孙可, E-mail: sunke@bnu.edu.cn
  • 1. 北京师范大学环境学院水环境模拟国家重点实验室, 北京, 100875;
  • 2. 广东工业大学环境生态工程研究院, 广州, 510006
基金项目:

国家自然科学基金创新研究群体项目(51721093)和北京市自然科学基金(JQ19033)资助.

摘要: 生物质炭在碳封存和土壤改良等方面的应用潜力取决于其在土壤中的微生物矿化稳定性.明确生物质炭在土壤中微生物矿化稳定性是推进生物质炭在土壤固碳、改良等领域应用的关键.基于生物质炭在土壤中的微生物矿化稳定性研究进展,本文系统总结了不同类型生物质炭的微生物矿化速率和在土壤中的平均驻留时间,探讨了不同因素(生物质炭特性、土壤特性和外源不稳定有机质的添加等)对生物质炭微生物矿化稳定性的影响,阐述了生物分解过程中生物质炭的性质变化及其与土壤微生物/有机质/矿物质的交互作用,简述了生物质炭中内源矿物质和外源土壤矿物质对其矿化稳定性的影响机理.最后,总结现有研究的不足,并提出今后的研究重点.

English Abstract

参考文献 (110)

目录

/

返回文章
返回