土壤和底泥间隙水中汞-硫-铁纳米颗粒物的形成条件、结构特征及其在甲基汞生物合成中的作用

吉云芸, 杨麒弘, 张彤. 土壤和底泥间隙水中汞-硫-铁纳米颗粒物的形成条件、结构特征及其在甲基汞生物合成中的作用[J]. 环境化学, 2020, (1): 1-7. doi: 10.7524/j.issn.0254-6108.2019092705
引用本文: 吉云芸, 杨麒弘, 张彤. 土壤和底泥间隙水中汞-硫-铁纳米颗粒物的形成条件、结构特征及其在甲基汞生物合成中的作用[J]. 环境化学, 2020, (1): 1-7. doi: 10.7524/j.issn.0254-6108.2019092705
JI Yunyun, YANG Qihong, ZHANG Tong. Formation and structure of mercury-sulfide-iron nanoparticles and their role in the microbial production of methylmercury in soil and sediment porewater[J]. Environmental Chemistry, 2020, (1): 1-7. doi: 10.7524/j.issn.0254-6108.2019092705
Citation: JI Yunyun, YANG Qihong, ZHANG Tong. Formation and structure of mercury-sulfide-iron nanoparticles and their role in the microbial production of methylmercury in soil and sediment porewater[J]. Environmental Chemistry, 2020, (1): 1-7. doi: 10.7524/j.issn.0254-6108.2019092705

土壤和底泥间隙水中汞-硫-铁纳米颗粒物的形成条件、结构特征及其在甲基汞生物合成中的作用

    通讯作者: 张彤, E-mail: zhangtong@nankai.edu.cn
  • 基金项目:

    国家自然科学基金(41603099)资助.

Formation and structure of mercury-sulfide-iron nanoparticles and their role in the microbial production of methylmercury in soil and sediment porewater

    Corresponding author: ZHANG Tong, zhangtong@nankai.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41603099).
  • 摘要: 如何有效降低具有强生物毒性的甲基汞的生成和积累是汞污染研究领域的热点和难点.目前,国内外学术界对于甲基汞生物合成的反应机理,特别是究竟哪种无机汞化合物可以被厌氧微生物转化为甲基汞尚缺乏系统准确的认识.本文以阐明土壤和底泥间隙水这一甲基汞生成和积累的主要环境中无机汞的化学存在形式及其甲基化倾向为目标,研究该环境中大量存在的还原性铁对甲基汞生物合成前体物质的影响.本项目将研究不同环境条件下汞-硫-铁之间的相互作用,明确该过程的反应产物,特别是汞-硫-铁纳米颗粒物的形成条件、稳定性和结构特征;分析这种复合纳米颗粒物对于甲基化微生物的生物可利用性;考察纳米颗粒物向微生物细胞内部传递甲基汞前体物质的方式,包括溶解、巯基络合离子交换、穿越细胞膜等.本研究可为建立基于环境指标预测甲基汞合成的量化模型提供理论基础,对准确评价汞污染产生的环境风险,有效开展环境修复具有重要的理论意义和应用价值.
  • 加载中
  • [1] MERGLER D, ANDERSON H A, CHAN L H M, et al. Methylmercury exposure and health effects in humans:A worldwide concern[J]. Ambio, 2007, 36(1):3-11.
    [2] GRANDJEAN P, SATOH H, MURATA K, et al. Adverse effects of methylmercury:Environmental health research implications[J]. Environmental Health Perspectives, 2010, 118(8):1137-1145.
    [3] WIENER J G, KRABBENHOFT D P, HEINZ G H, et al. Ecotoxicology of mercury//Handbook of Ecotoxicology[C]. 2003.
    [4] CLARKON T W. The three modern faces of mercury.[J]. Environmental Health Perspectives, 2002, 110(suppl 1):11-23.
    [5] KRYSTEK P, RISEMA R. Mercury speciation in thawed out and refrozen fish samples by gas chromatography coupled to inductively coupled plasma mass spectrometry and atomic fluorescence spectroscopy[J]. Analytical & Bioanalytical Chemistry, 2005, 381(2):354-359.
    [6] HRENCHUK L E, BLANCHFIELD P J, PATERSON M J, et al. Dietary and waterborne mmercury accumulation by Yellow Perch:A field experiment[J]. Environmental Science & Technology, 2012, 46(1):509-516.
    [7] FENG X, LI P, QIU G, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China[J]. Environmental Science & Technology, 2008, 42(1):326-332.
    [8] ZHANG H, FENG X, Larssen T, et al. In inland china, rice, rather than fish, is the major pathway for methylmercury exposure[J]. Environmental Health Perspectives, 2010, 118(9):1183-1188.
    [9] MENG B, FENG X, QIU G, et al.The process of methylmercury accumulation in rice (Oryza sativa L.)[J]. Environmental Science & Technology, 2011, 45(7):2711-2717.
    [10] KERIN E J, GILMOUR C C, RODEN E, et al. Mercury methylation by dissimilatory iron-reducing bacteria[J]. Applied and Environmental Microbiology, 2006, 72(12):7919-7921.
    [11] COMPEAU G C, BARTHA R. Sulfate-reducing bacteria:Principal methylators of mercury in anoxic estuarine sediment[J]. Applied and Environmental Microbiology, 1985, 50(2):498-502.
    [12] MUNTHE J, BODALY R A, BRANFIREUN B A, et al. Recovery of mercury-contaminated fisheries[J]. AMBIO:A Journal of the Human Environment, 2007, 36(1):33-44.
    [13] HARRIS R C, RUDD J W M, AMYOT M, et al. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition[J]. Proceedings of the National Academy of Sciences, 2007, 104(42):16586-16591.
    [14] BENOIT J M, GILMOUR C C, MASON R P, et al. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters[J]. Environmental Science & Technology, 1999, 33(6):951-957.
    [15] ANDREWS J C. Mercury speciation in the environment using X-ray absorption spectroscopy//Recent Developments in Mercury Science[M]. Springer Berlin Heidelberg, 2006.
    [16] BENOIT J M, MASON R P, GILMOUR C C. Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria[J]. Environmental Toxicology and Chemistry, 1999, 18(10):2138-2141.
    [17] SCHAEFER J K, MOREL F M M. High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens[J]. Nature Geoscience, 2009, 2(2):123-126.
    [18] SCHAEFER J K, ROCKS S S, ZHENG W, et al. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(21):8714-8719.
    [19] DYSSEN D, WEDBORG M. The sulphur-mercury(II) system in natural waters[J]. Water Air & Soil Pollution, 1991, 56(1):507-519.
    [20] SKYLLBERG U. Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions:Illumination of controversies and implications for MeHg net production[J].Journal of Geophysical Research-Atmosphere, 2008, 12:113.
    [21] DEONARINE A, HSU-KIM H. Precipitation of mercuric sulfide nanoparticles in NOM-Containing water:Implications for the natural Environment[J]. Environmental Science & Technology, 2009, 43(7):2368-2373.
    [22] GRAHAM A M, AIKEN G R, GILMOUR C C. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions[J]. Environmental Science & Technology, 2012, 46(5):2715-2723.
    [23] MOREAU J W, GIONFRIDDO C M, KRABBENHOFT D P, et al. The effect of natural organic matter on mercury methylation by desulfobulbus propionicus 1pr3[J]. Frontiers in Microbiology, 2015, 6:1389.
    [24] HELLAL J, GUEDRON S, HUGUET L, et al. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction:A column study to mimic reactive transfer in an anoxic aquifer[J]. Journal of Contaminant Hydrology, 2015, 180:56-68.
    [25] MORSE J W, LUTHER G W I. Chemical influences on trace metal-sulfide interactions in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(19):3373-3378.
    [26] RAMALHOSA E,SEGADE S R, PEREIRA E, et al. Mercury cycling between the water column and surface sediments in a contaminated area[J]. Water Research, 2006, 40(15):2893-2900.
    [27] MERRITT K A, AMIRBAHMAN A. Mercury dynamics in sulfide-rich sediments:Geochemical influence on contaminant mobilization within the Penobscot River estuary, Maine, USA[J]. Geochimica et Cosmochimica Acta, 2007, 71(4):929-941.
    [28] PALACHE C, BERMAN H, FRONDEL C.Dana's system of mineralogy[M]. 7th edition. New York:John Wiley & Sons,1944.
    [29] ULRICH P D, SEDLAK D L. Impact of iron amendment on net methylmercury export from tidal wetland microcosms.[J]. Environmental Science & Technology, 2010, 44(19):7659-7665.
    [30] MEHROTRA A S, SEDLAK D L. Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries[J]. Environmental Science and Technology, 2005, 39(8):2564-2570.
    [31] HAN S, OBRAZTSOVA A, PRETTO P, et al. Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries[J]. Marine Chemistry, 2008, 111(3-4):214-220.
    [32] LUTHER G W, ROZAN T F, TAILLEFERT M, et al. Chemical speciation drives hydrothermal vent ecology[J]. Nature, 2001, 410(6830):813-816.
    [33] ROZAN T F, LASSMAN M E, RIDGE D P, et al. Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers[J]. Nature, 2000, 406(6798):879-882.
    [34] DEONARINE A, LAU B L T, AIKEN G R, et al. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles[J]. Environmental Science & Technology, 2011, 45(8):3217-3223.
    [35] LAU B L T, HSU-KIM H. Precipitation and growth of zinc sulfide nanoparticles in the presence of thiol-containing natural organic Ligands[J]. Environmental Science & Technology, 2008, 42(19):7236-7241.
    [36] MULLAUGH K M. Spectroscopic determination of the size of cadmium sulfide nanoparticles formed under environmentally relevant conditions.[J]. Journal of Environmental Monitoring, 2010, 12(4):890-897.
    [37] SKYLLBERG U, DROTT A. Competition between disordered iron sulfide and natural organic matter associated Tthiols for mercury(II)-An EXAFS study[J]. Environmental Science & Technology, 2010, 44(4):1254-1259.
    [38] JEONG H Y, KLAUE B, BLUM J D, et al. Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS)[J]. Environmental Science & Technology, 2007, 41(22):7699-7705.
    [39] GONG Y, LIU Y, XIONG Z, et al. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles:Reaction mechanisms and effects of stabilizer and water chemistry[J]. Environmental Science & Technology, 2014, 48(7):3986-3994.
    [40] ZHANG T, KIM B, LEVARD, CLÉMENT, et al. Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides[J]. Environmental Science & Technology, 2012, 46(13):6950-6958.
    [41] PHAM L T, MORRIS A, ZHANG T, et al. Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter:Structural properties, aggregation, and biotransformation[J]. Geochimica et Cosmochimica Acta, 2014, 133:204-215.
    [42] ZHANG T, KUCHARZYK K H, KIM B, et al. Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides[J]. Environmental Science & Technology, 2014, 48(16):9133-9141.
    [43] JULIAN B, KAGJA H, THILO H, et al. Nanosized iron oxide colloids strongly enhance microbial iron reduction[J]. Applied & Environmental Microbiology, 2010, 76(1):184-189.
    [44] GLASAUER S, LANGLEY S, BEVERIDGE T J. Sorption of Fe (Hydr)oxides to the surface of shewanella putrefaciens:Cell-bound fine-grained minerals are not always formed de novo[J]. Applied and Environmental Microbiology, 2001, 67(12):5544-5550.
    [45] BONNEVILLE S, CAPPELLEN P V, BEHRENDS T. Microbial reduction of iron(Ⅲ) oxyhydroxides:Effects of mineral solubility and availability[J]. Chemical Geology, 2004, 212(3-4):255-268.
    [46] GRANTHAM M C, DOVE P M, DICHRISTINA T J. Microbially catalyzed dissolution of iron and aluminum oxyhydroxide mineral surface coatings[J]. Geochimica et Cosmochimica Acta, 1997, 61(21):4467-4477.
    [47] JONSSON S, SKYLLBERG U, NILSSON M B, et al. Mercury methylation rates for geochemically relevant Hg-II species in sediments[J]. Environmental Science & Technology, 2012, 46(21):11653-11659.
  • 加载中
计量
  • 文章访问数:  1444
  • HTML全文浏览数:  1444
  • PDF下载数:  174
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-27
  • 刊出日期:  2020-01-01

土壤和底泥间隙水中汞-硫-铁纳米颗粒物的形成条件、结构特征及其在甲基汞生物合成中的作用

    通讯作者: 张彤, E-mail: zhangtong@nankai.edu.cn
  • 南开大学环境科学与工程学院, 教育部环境污染过程与基准重点实验室, 天津市城市生态环境修复与污染防治重点实验室, 天津, 300350
基金项目:

国家自然科学基金(41603099)资助.

摘要: 如何有效降低具有强生物毒性的甲基汞的生成和积累是汞污染研究领域的热点和难点.目前,国内外学术界对于甲基汞生物合成的反应机理,特别是究竟哪种无机汞化合物可以被厌氧微生物转化为甲基汞尚缺乏系统准确的认识.本文以阐明土壤和底泥间隙水这一甲基汞生成和积累的主要环境中无机汞的化学存在形式及其甲基化倾向为目标,研究该环境中大量存在的还原性铁对甲基汞生物合成前体物质的影响.本项目将研究不同环境条件下汞-硫-铁之间的相互作用,明确该过程的反应产物,特别是汞-硫-铁纳米颗粒物的形成条件、稳定性和结构特征;分析这种复合纳米颗粒物对于甲基化微生物的生物可利用性;考察纳米颗粒物向微生物细胞内部传递甲基汞前体物质的方式,包括溶解、巯基络合离子交换、穿越细胞膜等.本研究可为建立基于环境指标预测甲基汞合成的量化模型提供理论基础,对准确评价汞污染产生的环境风险,有效开展环境修复具有重要的理论意义和应用价值.

English Abstract

参考文献 (47)

目录

/

返回文章
返回