热解温度对生物炭循环伏安曲线特性的影响

冯诗慧, 孙正一, 张金硕, 耿坤, 武宇飞, 张鹏. 热解温度对生物炭循环伏安曲线特性的影响[J]. 环境化学, 2021, (3): 828-833. doi: 10.7524/j.issn.0254-6108.2020021902
引用本文: 冯诗慧, 孙正一, 张金硕, 耿坤, 武宇飞, 张鹏. 热解温度对生物炭循环伏安曲线特性的影响[J]. 环境化学, 2021, (3): 828-833. doi: 10.7524/j.issn.0254-6108.2020021902
FENG Shihui, SUN Zhengyi, ZHANG Jinshuo, GENG Kun, WU Yufei, ZHANG Peng. Effect of carbonization temperature on the cycle voltammetry characteristics of biochar[J]. Environmental Chemistry, 2021, (3): 828-833. doi: 10.7524/j.issn.0254-6108.2020021902
Citation: FENG Shihui, SUN Zhengyi, ZHANG Jinshuo, GENG Kun, WU Yufei, ZHANG Peng. Effect of carbonization temperature on the cycle voltammetry characteristics of biochar[J]. Environmental Chemistry, 2021, (3): 828-833. doi: 10.7524/j.issn.0254-6108.2020021902

热解温度对生物炭循环伏安曲线特性的影响

    通讯作者: 张鹏, E-mail: 20190010@kust.edu.cn.
  • 基金项目:

    国家自然科学基金青年项目(41907278),城市水资源和水环境国家重点实验室开放课题(HC201920)和昆明理工大学土壤环境与生态安全省创新团队(2019HC008)资助.

Effect of carbonization temperature on the cycle voltammetry characteristics of biochar

    Corresponding author: ZHANG Peng, 20190010@kust.edu.cn.
  • Fund Project: Supported by the National Natural Science Foundation Youth Project (41907278), Open Project of State Key Laboratory of Urban Water Resources and Water Environment (HC201920) and Kunming University of Science and Technology Innovation Team of Soil Environment and Ecological Safety Province (2019HC008).
  • 摘要: 随着生物炭在农业和环境领域的应用逐渐增多,生物炭对环境中生物化学过程的影响也日益加深.本文利用循环伏安曲线,探究了不同热解温度下生物炭的电子传递方式.结果发现,在热解温度为400℃时,生物炭的电导率较低,而循环伏安曲线上存在明显的氧化还原峰,这表明生物炭的电子传递方式以官能团的氧化还原反应过程为主.随着热解温度升高,以含氧官能团为主的氧化还原活性物质含量降低,氧化还原峰的峰电流降低;同时,生物炭比表面积增大、导电性增强,循环伏安曲线形状逐渐变为梭形,响应电流也逐渐增大;这表明生物炭的电子传递方式逐渐转变为主要依靠生物炭导电性的方式.总之,循环伏安曲线可以定性地分析生物炭的电子传递方式,为探究生物炭不同电子传递方式对生物化学过程的影响提供了一定的研究基础.
  • 加载中
  • [1] AHMAD M,RAJAPAKSHA A U,LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water:A review[J]. Chemosphere, 2014, 99:19-33.
    [2] XU G,LV Y,SUN J, et al. Recent advances in biochar applications in agricultural soils:Benefits and environmental implications[J]. Clean-Soil Air Water, 2012, 40, (10):1093-1098.
    [3] ZHAO G,LIU X,ZHANG Q, et al. Effect of biochar on N2O emissions from agricultural soil[J]. Journal of Agro-Environment Science, 2018, 37(12):2872-2880.
    [4] ZHOU Y,LIU X,XIANG Y, et al. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution:Adsorption mechanism and modelling[J]. Bioresource Technology, 2017, 245:266-273.
    [5] AL-WABEL M I,AL-OMRAN A,EL-NAGGAR A H, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J]. Bioresource Technology, 2013, 131:374-379.
    [6] CROMBIE K,MASEK O,SOHI S P, et al. The effect of pyrolysis conditions on biochar stability as determined by three methods[J]. Global Change Biology Bioenergy, 2013, 5(2):122-131.
    [7] SULIMAN W,HARSH J B,ABU-LAIL N I, et al. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties[J]. Biomass & Bioenergy, 2016, 84:37-48.
    [8] GAI X,WANG H,LIU J, et al. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate[J]. Plos One, 2014, 9(12):e113888.
    [9] YUAN J H,XU R K,ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3):3488-3497.
    [10] TAN X,LIU Y,ZENG G, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125:70-85.
    [11] YU L,YUAN Y,TANG J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens[J]. Scientific Reports, 2015, 5:16221.
    [12] SUN T,LEVIN B D A,GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communications, 2017, 8:14873.
    [13] SPOKAS K A. Review of the stability of biochar in soils:Predictability of O:C molar ratios[J]. Carbon Management, 2010, 1(2):289-303.
    [14] PEREIRA R C,KAAL J,ARBESTAIN M C, et al. Contribution to characterisation of biochar to estimate the labile fraction of carbon[J]. Organic Geochemistry, 2011, 42(11):1331-1342.
    [15] WANG T,CAMPS-ARBESTAIN M,HEDLEY M. Predicting C aromaticity of biochars based on their elemental composition[J]. Organic Geochemistry, 2013, 62:1-6.
    [16] LU H,HU X,LIU H. Influence of pyrolysis conditions on stability of biochar[J]. Enuivonmental Science and Technology, 2013, 36(8):11-14.
    [17] 李飞跃,陶进国,汪建飞,等.不同温度下制备花生壳生物炭的结构性质差异[J].环境工程学报,2017,11(6):3726-3730.

    LI F Y,TAO J G,WANG J F, et al. Difference characteristics of biochar derived from peanut shell under different temperatures[J]. Chinese Journal of Environmental Engineering, 2017, 11(6):3726-3730(in Chinese).

    [18] ZHANG X,HOU G,ZHANG Y, et al. Structural and physico-chemical properties of biochars prepared from different rice straw[J]. Environment Engineering, 2017, 35(9):122-126.
    [19] XU D. Preparation biochar of corn stover and structural characteristics analysis[J]. Guihaia, 2018, 38(9):1125-1135.
    [20] GABHI R S,KIRK D W,JIA C Q. Preliminary investigation of electrical conductivity of monolithic biochar[J]. Carbon, 2017, 116:435-442.
    [21] KEILUWEIT M,NICO P S,JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environ Sci Technol, 2010, 44(4):1247-1253.
    [22] PANDOLFO A G,HOLLENKAMP A F. Carbon properties and their role in supercapacitors[J]. J Power Sources, 2006, 157(1):11-27.
    [23] ZHANG L L,ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9):2520-2531.
    [24] BRUUN E W,AMBUS P,EGSGAARD H, et al. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics[J]. Soil Biology & Biochemistry, 2012, 46:73-79.
    [25] ZHU L,LEI H,WANG L, et al. Biochar of corn stover:Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115:149-156.
  • 加载中
计量
  • 文章访问数:  2817
  • HTML全文浏览数:  2817
  • PDF下载数:  99
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-19

热解温度对生物炭循环伏安曲线特性的影响

    通讯作者: 张鹏, E-mail: 20190010@kust.edu.cn.
  • 1. 昆明理工大学环境科学与工程学院, 昆明, 650500;
  • 2. 云南省土壤固碳与污染控制重点实验室, 昆明, 650500
基金项目:

国家自然科学基金青年项目(41907278),城市水资源和水环境国家重点实验室开放课题(HC201920)和昆明理工大学土壤环境与生态安全省创新团队(2019HC008)资助.

摘要: 随着生物炭在农业和环境领域的应用逐渐增多,生物炭对环境中生物化学过程的影响也日益加深.本文利用循环伏安曲线,探究了不同热解温度下生物炭的电子传递方式.结果发现,在热解温度为400℃时,生物炭的电导率较低,而循环伏安曲线上存在明显的氧化还原峰,这表明生物炭的电子传递方式以官能团的氧化还原反应过程为主.随着热解温度升高,以含氧官能团为主的氧化还原活性物质含量降低,氧化还原峰的峰电流降低;同时,生物炭比表面积增大、导电性增强,循环伏安曲线形状逐渐变为梭形,响应电流也逐渐增大;这表明生物炭的电子传递方式逐渐转变为主要依靠生物炭导电性的方式.总之,循环伏安曲线可以定性地分析生物炭的电子传递方式,为探究生物炭不同电子传递方式对生物化学过程的影响提供了一定的研究基础.

English Abstract

参考文献 (25)

目录

/

返回文章
返回