-
左氧氟沙星(levofloxacin,LEV)是一类人工合成的喹诺酮类广谱抗生素,在细菌感染方面具有良好的治疗效果,被广泛用于医疗、畜禽和水产养殖业. 由于使用量大、生物机体代谢率低,LEV大多以原药形式被排出,进入土壤、水体等环境介质[1]. 环境中残留的LEV会诱发细菌产生耐药性,也会与有机物或重金属反应,形成复杂化合物或螯合物,对生态环境和人类健康构成严重威胁[2]. 目前,传统生物处理技术对LEV去除率不到10%[3]。现有技术如膜分离和吸附法虽已用于抗生素废水处理,但存在耗时长、花费高且污染物去除效率低等缺点[4-5]. 因此,急需开发高效、节能、环保的LEV废水处理新技术.
国内外应用较多的有机废水处理技术中,高级氧化技术因其快速、高效等特点受到研究者广泛关注. Fenton反应是一种有效去除污染物的高级氧化技术,但均相Fenton过程存在反应条件苛刻(pH=2–3)、产生大量含铁泥浆及催化剂无法回收等问题[6]. 异相Fenton体系利用铁的氧化物(如针铁矿、磁铁矿等)或金属负载型催化剂,把自由的Fe离子固定,从而拓宽了体系的pH应用范围的同时可将催化剂回收利用[7]. 但Fe3+还原为Fe2+速率常数仅为0.001—0.02 mol−1·s−1,限制了整个体系的反应速率[8]. 而Cu具有与Fe类似的氧化还原特性,H2O2将Cu2+还原为Cu+的速率常数是Fe的23000倍[9]. Cu2O是一种常见的铜氧化物,具有低毒性、低成本和利于回收等优点. Kuo等[10]研究了Cu2O/H2O2体系对双酚A的降解,当Cu2O投加量0.112 g·L−1、H2O2浓度30 mmol·L−1、初始双酚A浓度10 mg·L−1,反应60 min,双酚A的去除率为78%. 此外,Cu2O也是半导体催化剂,在紫外光照下 Cu2O可高效降解甲基蓝、苯酚等新型污染物[11-13]. UV、Cu2O及H2O2组合体系可多种途径产生·OH,具有高效降解废水中有机污染物、降低治理成本的潜在优势. 但UV/Cu2O/H2O2组合体系耦合强化降解LEV的研究还鲜见报道.
因此,本研究考察UV/Cu2O/H2O2组合体系降解LEV的效果及影响因素,采用自由基淬灭剂确定该体系中的活性物种,检测降解中间产物,采用大肠杆菌为指示菌,评估降解过程中LEV抗菌性变化,此外研究无机阴离子对该降解过程的影响,旨在为LEV废水处理探索新方法.
UV/Cu2O/H2O2耦合强化降解左旋氧氟沙星
Degradation of levofloxacin by UV/Cu2O/H2O2
-
摘要: 选择快速高效的方法降解左氧氟沙星(LEV)对抗生素废水的处理具有重要的实际意义. 采用UV/Cu2O/H2O2组合体系降解LEV,探讨了Cu2O投加量、H2O2浓度、初始pH值、自由基淬灭剂和无机阴离子等影响因素对LEV降解的影响及机制. 结果表明,与单一UV、单一Cu2O、UV/H2O2、Cu2O/H2O2、UV/Cu2O相比,UV/Cu2O/H2O2体系显著提高了LEV的去除率,当Cu2O投加量为0.1 g·L−1,H2O2浓度为2 mmol·L−1,pH=3.2,LEV浓度20 mg·L−1,反应5 h,LEV去除率达到92.3%. 自由基淬灭实验表明,反应中主要的活性物种是·OH和h+. 采用LC-MS方法检测到8种中间产物,UV/Cu2O/H2O2体系通过逐步去除LEV官能团,将其降解为小分子物质. 大肠杆菌毒性实验表明,LEV的最终产物无抗菌性. Cl−、
${{\rm{SO}}_4^{2-}} $ 和${{\rm{NO}}_3^{-}} $ 对UV/Cu2O/H2O2体系降解LEV的抑制作用较小,而${{\rm{H}}_2{\rm{PO}}_4^{-}} $ 的抑制作用较大.Abstract: It is practically important to develop approaches that can rapidly and efficiently degrade Levofloxacin (LEV) in wastewater. The degradation of LEV in UV/Cu2O/H2O2 combined system was investigated in the present study, and the effects of reaction conditions, including the loading of Cu2O, concentration of H2O2, pH, radical scavengers and inorganic anions on the degradation of LEV, were studied. Results showed that compared with single UV, single Cu2O, UV/H2O2, Cu2O/H2O2, UV/Cu2O systems, the UV/Cu2O/H2O2 system effectively degraded LEV in water. More than 92.3% of LEV (20 mg·L−1) was removed by the UV/Cu2O/H2O2 system within 5 h treatment, under the reaction conditions of Cu2O 0.1 g·L−1, H2O2 2 mmol·L−1 and pH=3.2. Quencher experiments indicated that hydroxyl radicals and holes were the primary reactive species for degradation of LEV. LC-MS analyses revealed that eight intermediates were generated during degradation, and LEV was broken down into small products via gradually removing various functional groups. Toxicity studies of E.coli showed that degradation products had no antibacterial properties. Cl−,${\rm{SO}}_4^{2-} $ and${\rm{NO}}_3^{-} $ exhibited little effect on the removal of LEV, whereas the presence of${\rm{H}}_2{\rm{PO}}_4^{-} $ markedly decreased the oxidation rate of LEV.-
Key words:
- levofloxacin /
- Cu2O /
- radical scavengers /
- toxicity /
- inorganic anions
-
-
[1] GUPTA G, KANSAL S K. Novel 3-D flower like Bi3O4Cl/BiOCl p-n heterojunction nanocomposite for the degradation of levofloxacin drug in aqueous phase [J]. Process Safety and Environmental Protection, 2019, 128: 342-352. doi: 10.1016/j.psep.2019.06.008 [2] MA Q L, ZHANG H X, ZHANG X Y, et al. Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate [J]. Chemical Engineering Journal, 2019, 360(15): 848-860. [3] HAO L T, OKANO K, ZHANG C, et al. Effects of levofloxacin exposure on sequencing batch reactor (SBR) behavior and microbial community changes [J]. Science of The Total Environment, 2019, 672(1): 227-238. [4] LI S, LI X, WANG D. Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics [J]. Separation and Purification Technology, 2004, 34(1/3): 109-114. doi: 10.1016/S1383-5866(03)00184-9 [5] QIN X P, DU P, CHEN J, et al. Effects of natural organic matter with different properties on levofloxacin adsorption to goethite: Experiments and modeling [J]. Chemical Engineering Journal, 2018, 345(1): 425-431. [6] YANG X J, XU X M, XU J, et al. Iron Oxychloride (FeOCl): An Efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants [J]. Journal of the American Chemical Society, 2013, 135(43): 16058-16061. doi: 10.1021/ja409130c [7] MENG X Q, YAN S, WU W Z, et al. Heterogeneous Fenton-like degradation of phenanthrene catalyzed by schwertmanite biosynthesized using Acidithiobacillus ferrooxidans [J]. RSC Advances, 2017, 7(35): 21638-21648. doi: 10.1039/C7RA02713C [8] 吕来, 胡春. 多相芬顿催化水处理技术与原理 [J]. 化学进展, 2017, 29(9): 981-999. doi: 10.7536/PC170552 LV L, HU C. Heterogeneous Fenton catalytic water treatment technology and mechanism [J]. Progress in Chemistry, 2017, 29(9): 981-999(in Chinese). doi: 10.7536/PC170552
[9] NICHELA D A, BERKOVIC A M, COSTANTE M R, et al. Nitrobenzene degradation in Fenton-like systems using Cu(Ⅱ) as catalyst. Comparison between Cu(Ⅱ)-and Fe(Ⅲ)-based systems [J]. Chemical Engineering Journal, 2013, 228(15): 1148-1157. [10] KUO C Y, WU C H, WU J T, et al. Preparation of immobilized Cu2O using microwave irradiation and its catalytic activity for bisphenol A: Comparisons of Cu2O/H2O2 and visible-light/Cu2O/H2O2 systems [J]. Water Science and Technology, 2014, 70(8): 1428-1433. doi: 10.2166/wst.2014.373 [11] MRUNAL V K, VISHNU A K, NAEEMAKHTAR M, et al. Cu2O nanoparticles for adsorption and photocatalytic degradation of methylene blue dye from aqueous medium [J]. Environmental Nanotechnology, Monitoring & Management, 2019, 12: 1-9. [12] LIU Y K, HUANG Q, JIANG G H, et al. Cu2O nanoparticles supported on carbon nanofibers as a cost-effective and efficient catalyst for RhB and phenol degradation [J]. Separation and Purification Technology, 2017, 32(18): 3605-3615. [13] 陈善亮, 朱耿臣, 应鹏展, 等. 纳米氧化亚铜电化学法制备及光催化研究进展 [J]. 环境化学, 2011, 30(5): 976-982. CHEN S L, ZHU G C, YING P Z, et al. Development of electrochemical preparation and photocatalytic characterization of nano-Cu2O [J]. Environmental Chemistry, 2011, 30(5): 976-982(in Chinese).
[14] 孟婷, 万甜, 张程成, 等. UV/H2O2降解水体中左旋氧氟沙星的研究 [J]. 西安理工大学学报, 2017, 33(3): 333-337. MENG T, WAN T, ZHANG C C, et al. Degradation of levofloxacin by UV/H2O2 in aqueous environment [J]. Journal of Xi’an University of Technology, 2017, 33(3): 333-337(in Chinese).
[15] 许芬, 张如锋, 沈芷璇, 等. UV/H2O2降解美罗培南的影响因素及毒性研究 [J]. 环境科学学报, 2019, 39(12): 4031-4038. XU F, ZHANG F R, SHEN Z X, et al. Degradation of meropenem by UV/H2O2: Influencing factors and antibacterial acticity [J]. Acta Scientiae Circumstantiae, 2019, 39(12): 4031-4038(in Chinese).
[16] CHAI F F, LI K Y, SONG C S, et al. Synthesis of magnetic porous Fe3O4/C/Cu2O composite as an excellent photo-Fenton catalyst under neutral condition [J]. Journal of Colloid and Interface Science, 2016, 475(1): 119-125. [17] ESHAQ G, ELMETWALLY A E. Bmim[OAc]-Cu2O/g-C3N4 as a multi-function catalyst for sonophotocatalytic degradation of methylene blue [J]. Ultradonics-Sonochemistry, 2019, 53: 99-109. doi: 10.1016/j.ultsonch.2018.12.037 [18] 徐峙晖, 吴静雨, 梁剑茹, 等. β-FeOOH的无模板水热合成及其光催化降解偶氮染料甲基橙的研究 [J]. 南京农业大学学报, 2013, 36(2): 132-136. XU Z H, WU J Y, LIANG J L, et al. Study of template-free hydrothermal synthesis of β-FeOOH and its catalytic degradation for azo dye methyl orange [J]. Journal of Nanjing Agricultural University, 2013, 36(2): 132-136(in Chinese).
[19] KHATAEE A R, VATANPOUR V, AMANI GHADIM A R. Decolorization of C. I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study [J]. Journal of Hazardous Materials, 2009, 161(2/3): 1225-1233. doi: 10.1016/j.jhazmat.2008.04.075 [20] KANG N, HUA I. Enhanced chemical oxidation of aromatic hydrocarbons in the soil systems [J]. Chemosphere, 2005, 61(7): 909-922. doi: 10.1016/j.chemosphere.2005.03.039 [21] KONG L S, FANG G D, KONG Y, et al. Cu2O@β-cyclodextrin as a synergistic catalyst for hydroxyl radical generation and molecular recognitive destruction of aromatic pollutants at neutral pH [J]. Journal of Hazardous Materials, 2018, 357(5): 109-118. [22] KUO C Y, PAI C Y. Application of cuprous oxide synthesized from copper-containing waste liquid to treat aqueous reactive dye [J]. Water Science and Technology, 2012, 65(9): 1557-1563. doi: 10.2166/wst.2012.047 [23] CRISPONI G, NURCHI V M, FANNI D, et al. Copper-related diseases: From chemistry to molecular pathology [J]. Coordination Chemistry Reviews, 2010, 254(7/8): 876-889. doi: 10.1016/j.ccr.2009.12.018 [24] DU D, SHI W, WANG L Z, et al. Yolk-shell structured Fe3O4@void@TiO2 as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline [J]. Applied Catalysis B: Environmental, 2017, 200: 484-492. doi: 10.1016/j.apcatb.2016.07.043 [25] ZHOU J B, LIU W, CAI W Q. The synergistic effect of Ag/AgCl@ZIF-8 modified g-C3N4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin [J]. Science of the Total Environment, 2019, 696(15): 1-13. [26] WANG L, ZHAO Q, HOU J, et al. One-step solvothermal synthesis of magnetic Fe3O4-graphite composite for Fenton-like degradation of levofloxacin [J]. Journal of Environmental Science and Health, Part A, 2016, 51(1): 52-62. doi: 10.1080/10934529.2015.1079112 [27] KAUR M, UMAR A, MEHTA S K, et al. Reduced graphene oxide-CdS heterostructure: An efficient fluorescent probe for the sensing of Ag(I) and sunset yellow and a visible-light responsive photocatalyst for the degradation of levofloxacin drug in aqueous phase [J]. Applied Catalysis B: Environmental, 2019, 245(15): 143-158. [28] XIA Y J, DAI Q Z. Electrochemical degradation of antibiotic levofloxacin by PbO2 electrode: Kinetics, energy demands and reaction pathways [J]. Chemosphere, 2018, 205: 215-222. doi: 10.1016/j.chemosphere.2018.04.103 [29] SHARMA S, UMAR A, MEHTA S K, et al. Solar light driven photocatalytic degradation of levofloxacin using TiO2/carbon-dot nanocomposites [J]. New Journal of Chemistry, 2018, 42(9): 7445-7456. doi: 10.1039/C7NJ05118B [30] 龚月湘. 电化学高级氧化技术深度处理抗生素左氧氟沙星的效能与机理研究[D]. 北京: 北京交通大学, 2016: 31. GONG Y X. Degradation performance and mechanism study of antibiotic levofloxacin treated by electrochemical advanced oxidation processes[D]. Beijing: Beijing Jiaotong University, 2016: 31 (in Chinese).
[31] ZHAO C, WANG Z H, WANG C Y, et al. Photocatalytic degradation of DOM in urban stormwater runoff with TiO2 nanoparticles under UV light irradiation: EEM-PARAFAC analysis and influence of co-existing inorganic ions [J]. Environmental Pollution, 2018, 243: 177-188. doi: 10.1016/j.envpol.2018.08.062 [32] LAAT D J, LE T G, LEGUBE B. A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(Ⅱ)/H2O2 and Fe(Ⅲ)/H2O2 [J]. Chemosphere, 2004, 55(5): 715-723. doi: 10.1016/j.chemosphere.2003.11.021 [33] 徐秀娟, 吕宝玲, 许婷婷, 等. UV/H2O2氧化降解克拉霉素的反应动力学及影响因素 [J]. 环境科学学报, 2017, 37(9): 3419-3426. XU X J, LV B L, XU T T, et al. Degradation of clarithromycin by UV/H2O2 process: reaction kinetics and impact factors [J]. Acta Scientiae Circumstantiae, 2017, 37(9): 3419-3426(in Chinese).