-
随着抗生素的广泛使用,大量抗生素被排放到环境中。Zhang等研究表明,2013年中国所有抗生素的总产量估计为248000吨,其中53800吨进入环境中,抗生素的大量使用导致环境中细菌耐药性不断增加[1]。如何有效处理抗生素废水成为目前亟待解决的重要环境问题。
针对抗生素废水的处理方法包括物理法、生物法、化学法等,在诸多方法中,高级氧化法以羟基自由基作为主要氧化剂,能有效将抗生素转化为无毒无害的CO2和H2O,因而受到广泛关注。在诸多高级氧化法中,电催化氧化法由于具有操作简单、工艺条件温和、无二次污染和催化活性高等优点广受重视[2-3]。
在电催化氧化法中,电极材料是决定氧化效率的关键。在诸多电极材料中,PbO2电极因具有较高的析氧电位,较强的耐腐蚀性和高催化活性而受到广泛关注[4]。为了进一步提高PbO2电极的使用寿命和催化性能,研究者通过在Ti基底与β-PbO2活性催化层之间增加SnO2镀层和α-PbO2中间层等方法来降低Ti基底与β-PbO2活性催化层之间的内应力,减少镀层缝隙,抑制钛的钝化,延长电极使用寿命。
有研究表明,在β-PbO2活性层中添加活性粒子可以提高电催化活性[5-7],掺杂的物质主要包括金属离子(Bi3+、Fe3+、Co2+)、非金属离子(F−)、金属氧化物颗粒(如CeO2)及表面活性物质(如PTFE)等。稀土元素相比其他掺杂物质在催化改性方面具有优异性能,究其原因,是稀土元素具有特殊的4f轨道结构,导致其具有特殊的物理、化学特征,沈宏[8]分别制备了4种稀土元素(La、Gd、Nd、Ce)掺杂的PbO2电极,结果显示,不同的稀土元素对电极具有不同的性能提升效果。
在诸多稀土元素中,Er元素研究较少。本实验利用稀土元素Er对PbO2进行了掺杂改性,探究了该元素最优的掺杂比例,运用SEM、EDS和XRD等手段对制备的电极进行表征分析;同时利用制备的Er-PbO2电极对磺胺甲基嘧啶(Sulfamerazine,SMR)进行了电化学氧化降解,分析电流密度、pH值对降解效果的影响,探究了电氧化过程中SMR的降解路径。
不同剂量Er元素掺杂PbO2电极的制备表征及其降解磺胺类抗生素
Preparation and characterization of lead dioxide electrode with different doses of rare Earth element Er and its degradation of sulfonamides
-
摘要: 本研究利用电沉积法制备PbO2电极,在制备表面活性层时加入不同剂量的稀土元素Er进行改性,得到0%Er-PbO2、0.5%Er-PbO2、1.0%Er-PbO2、2.0%Er-PbO2、4.0%Er-PbO2等5种电极,运用SEM、EDS、XRD、LSV等手段对制备得到的电极进行表征分析。选择磺胺甲基嘧啶为目标污染物,利用制备得到的电极对其进行电化学氧化降解,以液相色谱和COD指标分析降解效果。结果表明,2.0%Er-PbO2电极表面裂缝较少,均匀致密,晶粒尺寸小,仅为39.96 nm。极化曲线表明,2.0%Er-PbO2析氧电位最高,为1.82 V。同时,该电极对磺胺甲基嘧啶的降解效果最佳,矿化率最大,经测试,在电流密度30 mA·cm−2,pH=3.0,磺胺甲基嘧啶30 mg·L−1,0.2 mol·L−1的Na2SO4作为支持电解质的条件下,3 h后磺胺甲基嘧啶全部去除,6 h后COD去除率达到71.3%。根据磺胺甲基嘧啶降解过程的中间产物的分析,推断了其降解路径。Abstract: In the present study, PbO2 electrode was prepared by electro deposition. Different doses of rare earth element Er were added into the surfactant catalytic active layer and five kinds PbO2 of 0%Er-PbO2, 0.5%Er-PbO2, 1%Er-PbO2, 2%Er-PbO2, 4%Er-PbO2 electrodes were prepared respectively. These electrodes were characterized and analyzed by SEM, EDS, XRD and LSV. Sulfamerazine (SMR) was selected as the target pollutant and the electrochemical oxidation degradation was carried out. Degradation efficiency was analyzed by HPLC and COD. Characteristic results showed that the surface topography of 2%Er-PbO2 electrode was more compact and its grain size was smaller than other kinds of PbO2, which was only 39.96 nm. The polarization curves showed that 2%Er-PbO2 had the highest oxygen evolution Potential (1.82 V). What’s more, SMR degradation achieved the highest efficiency on 2%Er-PbO2 electrode. Under the conditions of 30 mA·cm−2, pH=3, SMR 30 mg·L−1,0.2 mol·L−1 Na2SO4 as supporting electrolyte, all SMR was removed after 3 h electrolysis, and the COD mineralization efficiency achieved 71.3% after 6 h degradation. According to the analysis of the intermediate products in the degradation process of SMR, its degradation path was deduced.
-
Key words:
- PbO2 electrode /
- rare earth element Er /
- electrochemical oxidation /
- sulfamerazine
-
表 1 加速寿命时间
Table 1. Accelerate life time
Ti/Sb-SnO2/PbO2 TiO2-NCs/Sb-SnO2/PbO2 加速寿命时间 Accelerate life time/h 10 35 使用寿命时间 Service lives/a 2.85 9.99 表 2 不同Er-PbO2电极的晶格尺寸
Table 2. Lattice dimensions of different Er-PbO2 electrodes
电极Electrodes WHM(301) 粒径/nm Particle size 0%PbO2 0.39072 43.43 0.5%Er-PbO2 0.40659 41.73 1.0%Er-PbO2 0.42429 39.99 2.0%Er-PbO2 0.42462 39.96 4.0%Er-PbO2 0.40481 41.92 表 3 电化学降解SMR的一级反应动力学参数
Table 3. Parameters of the first-order reaction kinetics
实验条件
Experiment conditionk R2 电极 0%PbO2 0.93 0.97 0.5%(Er-PbO2) 1.193 0.99 1.0%(Er-PbO2) 1.22 0.97 2.0%(Er-PbO2) 1.39 0.99 4.0%(Er-PbO2) 1.25 0.99 电流密度 10 mA·cm−2 0.96 0.93 20 mA·cm−2 1.33 0.96 30 mA·cm−2 1.42 0.99 pH 3.0 1.59 0.97 7.0 1.38 0.92 11.0 0.63 0.98 表 4 利用LC-MS分析得到降解过程的中间产物的m/z
Table 4. m/z table for intermediates analysis by LC-MS
序号
Number分子式
Molecular formula质核比
m/z相对分子量
Molecular weight结构式
Molecular structureT1 C11H12N4O2S 265.0756 264 T2 C11H11N3O 202.0982 201 T3 C11H11N3O3S 266.0775 265 -
[1] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the River Basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science&Technology, 2015, 49: 6772-6782. [2] 杨俊杰. 抗生素水体污染的处理方法研究 [J]. 化工管理, 2018(33): 161-162. doi: 10.3969/j.issn.1008-4800.2018.33.110 YANG J J. Study on the treatment of antibiotic water pollution [J]. Chemical Management, 2018(33): 161-162(in Chinese). doi: 10.3969/j.issn.1008-4800.2018.33.110
[3] 令狐文生. 抗生素废水处理及分析技术研究进展 [J]. 化学试剂, 2015, 37(2): 127-131, 170. LINGHU W S. Progress on treatment and analysis of antibiotic wastewater [J]. Chemical Reagent, 2015, 37(2): 127-131, 170(in Chinese).
[4] XIA Y J, DAI Q Z. Electrochemical degradation of methyldopa on a Fe doped PbO2 electrode: electrode characterization, reaction kinetics and energy demands [J]. Journal of the Electrochemical Society, 2017, 164(13): H877-H884. doi: 10.1149/2.0861713jes [5] AN H, LI Q, TAO D, et al. The synthesis and characterization of Ti/SnO2-Sb2O3/PbO2 electrodes: The influence of morphology caused by different electrochemical deposition time [J]. Applied Surface Science, 2011, 258(1): 218-224. doi: 10.1016/j.apsusc.2011.08.034 [6] 王灿永. 二氧化铅的修饰改性及电催化应用的研究[D]. 合肥: 安徽大学, 2016. WANG C Y. The modification of lead dioxide and its electricatalytic appilication research[D]. Hefei: University of Anhui, 2016(in Chinese).
[7] DAI Q Z, XIA Y J, CHEN J M. Mechanism of enhanced electrochemical degradation of highly concentrated aspirin wastewater using a rare earth La-Y co-doped PbO2 electrode [J]. Electrochimica Acta, 2016, 188: 871-881. doi: 10.1016/j.electacta.2015.10.120 [8] 沈宏. 镧/钆用于电化学氧化处理对甲基苯磺酸的机理研究[D]. 杭州: 浙江工业大学, 2013. SHEN H. Research about the mechanism of La/Gd on p-TSA degradation in electrochemical oxidation system[D]. Hangzhou: Zhejiang University of Technology, 2013(in Chinese).
[9] 林小燕, 杨卫华, 杨武涛, 等. 稀土铒改性钛基PbO2电极的制备和性能 [J]. 材料研究学报, 2012, 26(4): 367-371. LIN X Y, YANG W H, YANG W T, et al. Preparation and characterization of Ti-supported PbO2 rlectrode doped with rare earther [J]. Chinese Journal of Materials Research, 2012, 26(4): 367-371(in Chinese).
[10] 夏伊静. 高效金属掺杂PbO2电极的制备及用于降解典型制药废水的研究[D]. 杭州: 浙江工业大学, 2016. XIA Y J. Preparation of High efficient Metal doped Lead dioxide electrodes for the degradation of pHarmaceutical Wastewater[D]. Hangzhou: Zhejiang University of Technology, 2016(in Chinese).
[11] KONG J T, SHI S Y, KONG L C, et al. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides [J]. Electrochimica Acta, 2007, 53(4): 2048-2054. doi: 10.1016/j.electacta.2007.09.003 [12] 林小燕. 稀土铒改性二氧化铅电极的制备与应用[D]. 泉州: 华侨大学, 2013. LIN X Y. The Preparation and application of lead dioxide electrode modified with Erbium[D]. Quanzhou: Huaqiao University, 2013(in Chinese).
[13] 张海波. 稀土改性二氧化铅电极制备及电催化降解硝基苯的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. ZHANG H B. Preparation of lanthanon doped PbO2/Ti electrode and performance of electrocatalytic nitrobenzene[D]. Harbin: Harbin Institute of Technlogy, 2006(in Chinese).
[14] 邢俊涛. 碳纳米管改性三维多孔钛基体PbO2电极制备及其电催化性能研究[D]. 上海: 上海应用技术大学, 2016. XING J T. Study on the preparation and eletrocatalytic performance of PbO2 electrode modified by carbon nanotubes based on three-dimensional porous titanium substrate[D]. Shanghai: Shanghai University of Applied Technology, 2016(in Chinese).
[15] CHEN J M, XIA Y J, DAI Q Z. Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: Performance, kinetics and degradation mechanism [J]. Electrochimica Acta, 2015, 165: 277-287. doi: 10.1016/j.electacta.2015.02.029 [16] XIA Y J, DAI Q Z. Electrochemical degradation of antibiotic levofloxacin by PbO2 electrode: Kinetics, energy demands and reaction pathways [J]. ChemospHere, 2018, 205: 215-222. doi: 10.1016/j.chemosphere.2018.04.103 [17] DAI Q Z, ZHOU J Z, WENG M L, et al. Electrochemical oxidation metronidazole with Co modified PbO2 electrode: Degradation and mechanism [J]. Separation and Purification Technology, 2016, 166: 109-116. doi: 10.1016/j.seppur.2016.04.028 [18] FABIANSKA A, BIALK-BIELINSKA A, STEPNOWSKI P, et al. Electrochemical degradation of sulfonamides at BDD electrode: Kinetics, reaction pathway and eco-toxicity evaluation [J]. Journal of Hazardous Materials, 2014, 280: 579-587. doi: 10.1016/j.jhazmat.2014.08.050 [19] 孙凤坤. 电化学氧化法去除磺胺二甲基嘧啶及其产物研究[D]. 邯郸: 河北工程大学, 2018. SUN F K. The removal of sulfamethazine by electrochemical oxidation method and products analysis[D]. Handan: Hebei University of Engineering, 2018(in Chinese).