-
近年来,药品及个人护理品(pharmaceutical and personal care products, PPCPs)在世界范围内广泛使用,在地表水、废水甚至饮用水中检测到的频率不断增加,对生态环境和人类健康构成了严重危害[1-4]。高级氧化工艺(advanced oxidation processes, AOPs)可以产生大量自由基,被认为是去除PPCPs的有效技术[5-7]。紫外/过氧化氢(UV/H2O2)工艺是代表性的高级氧化工艺,其可以产生羟基自由基(·OH),对PPCPs有较好的去除效果[8]。但UV/H2O2工艺存在着药剂投加量大,成本高昂的缺点[9-10]。有研究发现,在氯化等消毒过程中PPCPs在一定程度上可以被去除[11]。但是,氯化消毒无法将顽固型PPCPs完全转化[12]。因此,在消毒过程中能够同时完成对PPCPs的去除的紫外/氯(UV/Cl)工艺近年来受到了广泛关注。作为一种高级氧化工艺,UV/Cl工艺不仅能够产生羟基自由基,还能生成Cl·和
$ {\rm{Cl}}_{\rm{2}}^{{\rm{ \cdot - }}} $ 等氯类自由基(reactive chlorine species, RCS),被认为是UV/H2O2工艺的替代品[13-18]。传统的研究通常只关注UV/Cl工艺中PPCPs的转化效率,缺少从反应机理以及转化产物毒性角度对不同环境中的UV/Cl工艺进行综合评价。有研究表明,PPCPs在氧化过程中有着较强的pH依赖性,且不同PPCPs差异明显[19-20],但现有研究未对其进一步解释。此外有研究发现,高级氧化工艺中众多PPCPs不能完全矿化,而是转化为毒性更高的中间产物[21-24]。基于此,通过探究不同条件下PPCPs的转化机理,评估其转化产物毒性情况,对实际水处理工艺的选择以及饮用水安全有重要意义。
磺胺类药物(sulfonamides, SAs)是一种典型的PPCPs,因其价格低、性质稳定,在防止细菌感染方面效果显著,一直以来就广泛被用做抗菌药物。磺胺类药物近年来在地表水、废水甚至饮用水中检测到的频率不断增加,已达到ng·L−1到μg·L−1的级别[25-26]。因此,本文选取3种磺胺类药物为目标PPCPs,探究UV/Cl工艺消毒过程中磺胺类药物的转化机理和产物毒性。
紫外/氯工艺中磺胺类药物的转化:机理和毒性评价
Transformation of sulfonamides in UV/chlorine process: mechanism and toxicity evaluation
-
摘要: 磺胺类药物(sulfonamides, SAs)是一种常用的抗菌药物,由于在水生环境中经常被发现,因此备受关注。本文研究了紫外/氯(UV/Cl)工艺中3种磺胺类药物的转化过程及其产物毒性变化,并与氯化、紫外/过氧化氢(UV/H2O2)工艺进行比较。结果显示,磺胺类药物在UV/Cl工艺中转化效率最高,氯类自由基在其中起到关键作用。在不同pH条件下,磺胺类药物在UV/Cl工艺中的转化效率会随pH值的增加而降低,但在pH值接近pKa值时突然升高,推测该现象与反应活性成分和SAs形态的变化有关。此外,对转化产物毒性的进一步研究发现,UV/Cl工艺的转化产物毒性最低(发光菌抑制率为6.99%—12.06%),但是未能显著降低SAs原溶液的毒性,并且由于氯代产物的出现,磺胺噻唑在转化后表现出更高的毒性。Abstract: Sulfonamides (SAs), a kind of commonly used pharmaceuticals, are frequently detected in natural water. In this study, the transformation and toxicity of three SAs by the UV/chlorine process were studied, using chlorination and UV/H2O2 processes for comparison. Among the three processes, UV/chlorine showed the best results for SA transformation. This demonstrates that reactive chlorine species played the key role for transformation. In the UV/chlorine process, SA transformation did not decrease with increasing pH, but peaks occurred near the pKa values of the SAs. It could attribute to the changes in the reaction component contents and changes in the forms of the SAs. In addition, the transformation products of the SAs and their toxicities were studied. The UV/chlorine process (inhibition efficiencies of photobacterium ranging from 6.99% to 12.06%) resulted in products with a lowest toxicity among the three processes, while the toxicity of the SA solution did not decrease after transformation. Particularly, sulfathiazole showed higher toxicity after transformation in the UV/chlorine process because of its chloride substitution products.
-
Key words:
- sulfonamides /
- UV/chlorine process /
- pH /
- kinetics /
- water treatment /
- toxicity
-
表 1 UV/Cl工艺中SAs的转化产物
Table 1. Identified transformation products in UV/chlorine process
化合物
Compound测得核质比
Measured(m/z)精确分子量
Exact molecular weight分子式
Molecular formula推测结构式
Proposed structureSTZ 256.0205 255.0136 C9H9N3O2S2 P290 289.9831 288.9746 C9H8N3O2S2Cl SDZ 251.0584 250.0524 C10H10N4O2S P187 187.0986 186.0905 C10H10N4 P219 219.0875 218.0803 C10H10N4O2 SPD 250.0640 249.0571 C11H11N3O2S P186 186.1013 185.0953 C11H11N3 P218 218.0918 217.0851 C11H11N3O2 -
[1] KALLENBORN R, BRORSTRöM-LUNDéN E, REIERSEN L O, et al. Pharmaceuticals and personal care products (PPCPs) in arctic environments: Indicator contaminants for assessing local and remote anthropogenic sources in a pristine ecosystem in change [J]. Environmental Science and Pollution Research, 2018, 25(33): 33001-33013. doi: 10.1007/s11356-017-9726-6 [2] TRAN N H, LI J H, HU J Y, et al. Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater [J]. Environmental Science and Pollution Research, 2014, 21(6): 4727-4740. doi: 10.1007/s11356-013-2428-9 [3] HAMANN E, STUYFZAND P J, GRESKOWIAK J, et al. The fate of organic micropollutants during long-term/long-distance river bank filtration [J]. Science of the Total Environment, 2016, 545: 629-640. [4] 王琦, 武俊梅, 彭晶倩, 等. 饮用水系统中药物和个人护理用品的研究进展 [J]. 环境化学, 2018, 37(3): 453-461. doi: 10.7524/j.issn.0254-6108.2017071901 WANG Q, WU J M, PENG J Q, et al. Research advances in pharmaceuticals and personal care products in drinking water system [J]. Environmental Chemistry, 2018, 37(3): 453-461(in Chinese). doi: 10.7524/j.issn.0254-6108.2017071901
[5] KATSOYIANNIS I A, CANONICA S, VON GUNTEN U. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2 [J]. Water Research, 2011, 45(13): 3811-3822. doi: 10.1016/j.watres.2011.04.038 [6] LEE Y, VON GUNTEN U. Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate(vi), and ozone) and non-selective oxidants (hydroxyl radical) [J]. Water Research, 2010, 44(2): 555-566. doi: 10.1016/j.watres.2009.11.045 [7] 郭晋, 陈作雁, 石林, 等. 光催化复合氧化技术对环丙沙星和磺胺甲恶唑的深度处理 [J]. 环境化学, 2019, 38(12): 2757-2767. doi: 10.7524/j.issn.0254-6108.2018122201 GUO J, CHEN Z Y, SHI L, et al. Advanced treatment of ciprofloxacin and sulfamethoxazole by the combined photocatalysis and oxidation technology [J]. Environmental Chemistry, 2019, 38(12): 2757-2767(in Chinese). doi: 10.7524/j.issn.0254-6108.2018122201
[8] HUBER M M, CANONICA S, PARK G Y, et al. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes [J]. Environmental Science & Technology, 2003, 37(5): 1016-1024. [9] ROSARIO-ORTIZ F L, WERT E C, SNYDER S A. Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater [J]. Water Research, 2010, 44(5): 1440-1448. doi: 10.1016/j.watres.2009.10.031 [10] LEE Y, GERRITY D, LEE M, et al. Organic contaminant abatement in reclaimed water by UV/H2O2 and a combined process consisting of O3/H2O2 followed by UV/H2O2: Prediction of abatement efficiency, energy consumption, and byproduct formation [J]. Environmental Science & Technology, 2016, 50(7): 3809-3819. [11] ZHANG S S, LIN T, CHEN W, et al. Degradation kinetics, byproducts formation and estimated toxicity of metronidazole (mnz) during chlor(am)ination [J]. Chemosphere, 2019, 235: 21-31. doi: 10.1016/j.chemosphere.2019.06.150 [12] HUERTA-FONTELA M, GALCERAN M T, VENTURA F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment [J]. Water Research, 2011, 45(3): 1432-1442. doi: 10.1016/j.watres.2010.10.036 [13] YANG X, SUN J L, FU W J, et al. PPCP degradation by uv/chlorine treatment and its impact on dbp formation potential in real waters [J]. Water Research, 2016, 98: 309-318. doi: 10.1016/j.watres.2016.04.011 [14] PAN M W, WU Z H, TANG C Y, et al. Comparative study of naproxen degradation by the uv/chlorine and the UV/H2O2 advanced oxidation processes [J]. Environmental Science Water Research & Technology, 2018, 4(9): 1219-1230. [15] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) [J]. Environmental Science & Technology, 2014, 48(4): 2344-2351. [16] JIN J, EL-DIN M G, BOLTON J R. Assessment of the uv/chlorine process as an advanced oxidation process [J]. Water Research, 2011, 45(4): 1890-1896. doi: 10.1016/j.watres.2010.12.008 [17] 张馨怡, 魏东斌, 杜宇国. 紫外-氯联合消毒处理及副产物生成特征研究进展 [J]. 环境化学, 2018, 37(9): 1950-1960. doi: 10.7524/j.issn.0254-6108.2017111302 ZHANG X Y, WEI D B, DU Y G. Ultraviolet-chlorine combination disinfection and formation of disinfection by-products: A review [J]. Environmental Chemistry, 2018, 37(9): 1950-1960(in Chinese). doi: 10.7524/j.issn.0254-6108.2017111302
[18] MATAFONOVA G, BATOEV V. Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review [J]. Water Research, 2018, 132: 117-189. [19] BEN W W, SHI Y W, LI W W, et al. Oxidation of sulfonamide antibiotics by chlorine dioxide in water: Kinetics and reaction pathways [J]. Chemical Engineering Journal, 2017, 327: 743-750. doi: 10.1016/j.cej.2017.06.157 [20] GUO K H, WU Z H, SHANG C, et al. Radical chemistry and structural relationships of ppcp degradation by UV/chlorine treatment in simulated drinking water [J]. Environmental Science & Technology, 2017, 51(18): 10431-10439. [21] XIANG Y Y, FANG J Y, SHANG C. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process [J]. Water Research, 2016, 90: 301-308. doi: 10.1016/j.watres.2015.11.069 [22] ESPLUGAS S, BILA D M, KRAUSE L G T, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents [J]. Journal of Hazardous Materials, 2007, 149(3): 631-642. doi: 10.1016/j.jhazmat.2007.07.073 [23] FU W J, LI B, YANG J Q, et al. New insights into the chlorination of sulfonamide: Smiles-type rearrangement, desulfation, and product toxicity [J]. Chemical Engineering Journal, 2018, 331: 785-793. doi: 10.1016/j.cej.2017.09.024 [24] PENG M G, DU E D, LI Z H, et al. Transformation and toxicity assessment of two UV filters using UV/H2O2 process [J]. Science of the Total Environment, 2017, 603/604: 361-369. doi: 10.1016/j.scitotenv.2017.06.059 [25] SUKUL P, SPITELLER M. Sulfonamides in the environment as veterinary drugs [J]. Reviews of Environmental Contamination & Toxicology, 2006, 187(187): 67-101. [26] 唐娜, 张圣虎, 陈玫宏, 等. 长江南京段表层水体中12种磺胺类抗生素的污染水平及风险评价 [J]. 环境化学, 2018, 37(3): 505-512. doi: 10.7524/j.issn.0254-6108.2017062705 TANG N, ZHANG S H, CHEN M H, et al. Contamination level and risk assessment of 12 sulfonamides in surface water of Nanjing reach of the Yangtze River [J]. Environmental Chemistry, 2018, 37(3): 505-512(in Chinese). doi: 10.7524/j.issn.0254-6108.2017062705
[27] WU J T, WU C H, LIU C Y, et al. Photodegradation of sulfonamide antimicrobial compounds (sulfadiazine, sulfamethizole, sulfamethoxazole and sulfathiazole) in various UV/oxidant systems [J]. Water Sci Technol, 2015, 71(3): 412-417. doi: 10.2166/wst.2015.005 [28] BARAN W, ADAMEK E, SOBCZAK A, et al. Photocatalytic degradation of sulfa drugs with TiO2, Fe salts and TiO2/FeCl3 in aquatic environment—kinetics and degradation pathway [J]. Applied Catalysis B: Environmental, 2009, 90(3): 516-525. [29] LI B, ZHANG T. pH significantly affects removal of trace antibiotics in chlorination of municipal wastewater [J]. Water Research, 2012, 46(11): 3703-3713. doi: 10.1016/j.watres.2012.04.018 [30] DEBORDE M, VON GUNTEN U. Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: A critical review [J]. Water Research, 2008, 42(1): 13-51. [31] LIAO Q N, JI F, LI J C, et al. Decomposition and mineralization of sulfaquinoxaline sodium during UV/H2O2 oxidation processes [J]. Chemical Engineering Journal, 2016, 284: 494-502. doi: 10.1016/j.cej.2015.08.150 [32] SOUFAN M, DEBORDE M, DELMONT A, et al. Aqueous chlorination of carbamazepine: Kinetic study and transformation product identification [J]. Water Research, 2013, 47(14): 5076-5087. doi: 10.1016/j.watres.2013.05.047 [33] LIN C C, LIN H Y, HSU L J. Degradation of ofloxacin using UV/H2O2 process in a large photoreactor [J]. Separation & Purification Technology, 2016, 168: 57-61. [34] SHARMA J, MISHRA I M, KUMAR V. Degradation and mineralization of bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82- mathcontainer loading mathjax oxidation systems [J]. Journal of Environmental Management, 2015, 156: 266-275. [35] IMOBERDORF G, MOHSENI M. Degradation of natural organic matter in surface water using vacuum-UV irradiation [J]. Journal of Hazardous Materials, 2011, 186(1): 240-246. doi: 10.1016/j.jhazmat.2010.10.118 [36] MáRTIRE D O, ROSSO J A, BERTOLOTTI S G, et al. Kinetic study of the reactions of chlorine atoms and Cl2•- radical anions in aqueous solutions. Ii. Toluene, benzoic acid, and chlorobenzene† [J]. Journal of Physical Chemistry A, 2001, 105(22): 5385-5392. doi: 10.1021/jp004630z [37] HASEGAWA K, NETA P. Rate constant and mechanisms of reaction of Cl2- radicals [J]. Jphyschem, 1978, 82(8): 854-857. [38] ALFASSI Z B, HUIE R E, MOSSERI S, et al. Kinetics of one-electron oxidation by the ClO radical [J]. International Journal of Radiation Applications & Instrumentationpart Cradiation Physics & Chemistry, 1988, 32(14): 3888-3891. [39] FANG J Y, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system [J]. Environmental Science & Technology, 2014, 48(3): 1859-1868. [40] WU Z H, FANG J Y, XIANG Y Y, et al. Roles of reactive chlorine species in trimethoprim degradation in the UV/Chlorine process: Kinetics and transformation pathways [J]. Water Research, 2016, 104: 272-282. doi: 10.1016/j.watres.2016.08.011 [41] SUN P Z, LEE W N, ZHANG R C, et al. Degradation of DEET and caffeine under UV/Chlorine and simulated Sunlight/Chlorine conditions [J]. Environmental Science & Technology, 2016, 50(24): 13265-13273. [42] WANG M, HELBLING D E. A non-target approach to identify disinfection byproducts of structurally similar sulfonamide antibiotics [J]. Water Research, 2016, 102: 241-251. doi: 10.1016/j.watres.2016.06.042 [43] JI Y, SHI Y, WANG L, et al. Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine: Formation of SO2 extrusion products and effects of natural organic matter [J]. Science of The Total Environment, 2017, 593/594: 704-712. doi: 10.1016/j.scitotenv.2017.03.192 [44] VENIERI D, GOUNAKI I, BIKOUVARAKI M, et al. Solar photocatalysis as disinfection technique: Inactivation of klebsiella pneumoniae in sewage and investigation of changes in antibiotic resistance profile [J]. Journal of Environmental Management, 2017, 195(2): 140-147. [45] BONVIN F, OMLIN J, RUTLER R, et al. Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation [J]. Environmental Science & Technology, 2013, 47(13): 6746-6755. [46] MA G G, DíAZ-CRUZ M S, BARCELó D. Kinetic studies and characterization of photolytic products of sulfamethazine, sulfapyridine and their acetylated metabolites in water under simulated solar irradiation [J]. Water Research, 2012, 46(3): 711-722. doi: 10.1016/j.watres.2011.11.035