光催化降解对抗生素藻类毒性效应影响研究进展

廖洋, 鲁金凤, 曹轶群, 刘睿哲, 梅园园, 熊若萱. 光催化降解对抗生素藻类毒性效应影响研究进展[J]. 环境化学, 2021, (1): 111-120. doi: 10.7524/j.issn.0254-6108.2019122404
引用本文: 廖洋, 鲁金凤, 曹轶群, 刘睿哲, 梅园园, 熊若萱. 光催化降解对抗生素藻类毒性效应影响研究进展[J]. 环境化学, 2021, (1): 111-120. doi: 10.7524/j.issn.0254-6108.2019122404
LIAO Yang, LU Jinfeng, CAO Yiqun, LIU Ruizhe, MEI Yuanyuan, XIONG Ruoxuan. Research progress on the effects of photocatalytic degradation on the algae toxicity of antibiotics[J]. Environmental Chemistry, 2021, (1): 111-120. doi: 10.7524/j.issn.0254-6108.2019122404
Citation: LIAO Yang, LU Jinfeng, CAO Yiqun, LIU Ruizhe, MEI Yuanyuan, XIONG Ruoxuan. Research progress on the effects of photocatalytic degradation on the algae toxicity of antibiotics[J]. Environmental Chemistry, 2021, (1): 111-120. doi: 10.7524/j.issn.0254-6108.2019122404

光催化降解对抗生素藻类毒性效应影响研究进展

    通讯作者: 鲁金凤, E-mail: lujinfeng@nankai.edu.cn
  • 基金项目:

    国家自然科学基金(51878357),天津市自然科学基金(18JCYBJC23200)和南开大学本科生创新科研"百项工程"计划(201910055809)资助.

Research progress on the effects of photocatalytic degradation on the algae toxicity of antibiotics

    Corresponding author: LU Jinfeng, lujinfeng@nankai.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(51878357), the National Natural Science Foundation of Tianjin(18JCYBJC23200) and Nankai University Undergraduate Innovation Projects 100(201910055809).
  • 摘要: 抗生素滥用带来环境中残留抗生素及其抗性基因的问题,近年来已成为全球关注的热点问题.光催化氧化技术是当前研究领域广泛采用的有效降解水环境中残留抗生素的热门方法;但光催化氧化无法使水环境中抗生素完全矿化,存在生态风险,探明光催化降解抗生素对其藻类毒理效应影响及内在机制,对研发高效、安全的光催化技术具有重要意义.本文在总结水环境中残留抗生素的藻类毒性检测方法和毒性效应的基础上,分析了光催化降解对抗生素藻类毒性效应的影响及其内在机制,并总结了不同抗生素的光催化反应及降解产物,讨论了两者与藻类毒性效应之间可能存在的关系,旨在为实现高效、安全光催化技术的可控设计提供思路.
  • 加载中
  • [1] SHI Y Y, YANG Z W, WANG B, et al. Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskite-supported Cu2O-TiO2 composite[J]. Applied Clay Science, 2016, 119:311-320.
    [2] 赵艳艳,缪情俄,梁旭华,等. ZnSe/CN复合材料降解水中污染物头孢曲松钠的机制探索[J]. 人工晶体学报, 2018, 47(6):1286-1292.

    ZHAO Y Y, LIAO Q E, LIANG X H, et al. Study on the mechanism of ceftriaxone sodium degradation in aquatic environment with ZnSe/CN composites[J]. Journal of Synthetic Crystals, 2018, 47(6):1286-1292(in Chinese).

    [3] 赵雪辉. 改性TiO2对四环素类抗生素降解研究[D]. 南京:南京师范大学, 2015. ZHAO X H. Study on degradation of tetracycline antibiotics by modified TiO2[D]. Nanjing:Nanjing Normal University,2015(in Chinese).
    [4] 周旭东. 四环素类、磺胺类抗生素对铜绿微囊藻和小球衣藻的影响研究[D]. 咸阳:西北农林科技大学, 2017. ZHOU X D. Effects of tetracyclines and sulfonamides on Microcystis aeruginosa and Chlamydomonas microsphaera[D]. Xianyang:Northwest A&F University,2017(in Chinese).
    [5] 国家环境保护总局水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 北京:中国环境科学出版社, 2002. Editorial Board of Water and Wastewater Monitoring and Analysis Methods of State Environmental Protection Administration. Water and waste water monitoring and analysis method[M].Beijing:China Environment Science Press,2002(in Chinese).
    [6] 王美仙. 淡水微藻对水体颗粒物与抗生素及其复合污染胁迫的响应研究[D]. 厦门:华侨大学, 2017. WANG M X. Study the response of freshwater microalgae to suspended particles antibiotics and combined stress[D]. Xiamen:Huaqiao University,2017(in Chinese).
    [7] 张迪,厉圆,沈忱思,等. 金霉素及其异构体降解产物对斜生栅藻的毒性效应研究[J]. 农业环境科学学报, 2019, 38(4):756-764.

    ZHANG D, LI Y, SHEN C S, et al. Understanding the toxic effects of chlortetracycline and its and its isomer degradation products on Scenedesmus obliquus[J]. Journal of Agro-Environment Science, 2019, 38(4):756-764(in Chinese).

    [8] 崔晗. 两种混合抗生素对铜绿微囊藻的生物效应和作用机理[D]. 济南:山东大学, 2015. CUI H. The biological effects and toxic mechanisms of two mixed antibiotics in Microcystis aeruginosa[D]. Jinan:Shandong University, 2015(in Chinese).
    [9] 薛丽香,童坦君,张宗玉. 报告基因的选择及其研究趋向[J]. 生理科学进展, 2002, 33(4):364-366.

    XUE L X, TONG T J, ZHANG Z Y. Selection and research trend of reporter gene[J]. Progress in Physiological Sciences,2002,33(4):364-366(in Chinese).

    [10] 查士红,徐旭东,胡晗华. 利用蓝藻生物报告体检测水体中可利用铁的研究[J]. 水生生物学报, 2012, 36(1):73-77.

    ZHA S H, XU X D, HU H H. Iron-dependent cyanobacterial bioreporter for measuring Fe bioavailability in freshwater environments[J]. Acta Hydrobiologica Sinica, 2012, 36(1):73-77(in Chinese).

    [11] DESAI S R, VERLECAR X N, NAGARAJAPPA, et al. Genotoxicity of cadmium in marine diatom Chaetoceros tenuissimus using the alkaline Comet assay[J]. Ecotoxicology, 2006, 15(4):359-363.
    [12] 李晓敏,耿存珍. 离子液体的环境风险评价[J]. 环境科技, 2013, 26(5):67-72.

    LI X M, GENG C Z. The environmental risks assessment of ionic liquids[J]. Environmental Science and Technology, 2013, 26(5):67-72(in Chinese).

    [13] KUANG Q J, Y ZHAO W, P CHENG S. Toxicity of dibutyl phthalate to algae.[J]. Bulletin of Environmental Contamination and Toxicology, 2003, 71(3):602-608.
    [14] 董娟,李大平,陶勇,等. 氮磷胁迫下藻-菌群落的变化研究[J]. 环境科学与技术, 2012, 35(12):40-45.

    DONG J, LI D P, TAO Y, et al. Variation of algal-bacterial community under nitrogen-phosphorus stress[J]. Environmental Science & and Technology, 2012, 35(12):40-45(in Chinese).

    [15] 陈柳芳. 三种喹诺酮类抗生素对斜生栅藻的毒性效应[D]. 长春:东北师范大学, 2010. CHEN L F. The toxicity effect of three quinolone antibiotics on Scenedesmus obliquus[D]. Changchun:Northeast Normal University, 2010(in Chinese).
    [16] 石丽娟. 水环境中典型抗生素类药物的检测分析和生态毒性研究[C]. 上海:上海交通大学, 2010:110. SHI L J. Analysis of typical antibiotics in water environment and investigation of their ecological toxicity[C]. Shanghai:Shanghai Jiao Tong University, 2010:110(in Chinese).
    [17] LIU B Y, NIE X P, LIU W Q, et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum[J]. Ecotoxicology & Environmental Safety, 2011, 74(4):1027-1035.
    [18] 成丽芸. 急性毒性藻红外测试中抗生素的敏感藻确定[D]. 重庆:重庆大学, 2010. CHENG L Y. Research on the determining sensitive algae in measuring algae infrared radiation to respond to acute toxicity of antibiotics[D]. Chongqing:Chongqing University, 2010(in Chinese).
    [19] ANDREOZZI R, CANTERINO M, GIUDICE R L, et al. Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation[J]. Water Research, 2006, 40(3):630-638.
    [20] LIU B, LIU W, NIE X, et al. Growth response and toxic effects of three antibiotics on Selenastrum capricornutum evaluated by photosynthetic rate and chlorophyll biosynthesis[J]. Journal of Environmental Sciences, 2011(9):154-159.
    [21] 王作铭,陈军,陈静,等. 地表水中抗生素复合残留对水生生物的毒性及其生态风险评价[J]. 生态毒理学报, 2018, 13(4):149-160.

    WANG Z M,CHEN J,CHEN J,et al. Toxicity to aquatic organisms and ecological risk assessment of antibiotic compound residues in the surface water[J]. Asian Journal of Ecotoxicology,2018,13(4):149-160(in Chinese).

    [22] FU L, HUANG T, WANG S, et al. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action[J]. Chemosphere, 2017, 168:217-222.
    [23] 连鹏,葛利云,邓欢欢,等. 两种喹诺酮类抗生素对亚心形扁藻的毒性效应研究[J]. 环境科学与管理, 2014, 39(5):46-48.

    LIAN P,GE L Y,DENG H H,et al. Toxic effects of two quinolone antibiotics on Platymonas subcordiformis[J]. Environmental Science And Management, 2014, 39(5):46-48(in Chinese).

    [24] KOUSSEVITZKY S, NOTT A, MOCKLER T C, et al. Signals from chloroplasts converge to regulate nuclear gene expression[J]. Science, 2007, 316(5825):715.
    [25] 刘滨扬. 红霉素、环丙沙星和磺胺甲噁唑对羊角月牙藻的毒性效应及其作用机理[D]. 广州:暨南大学, 2011. LIU B Y. Toxic effects and its mechanism of erythromycin, ciprofloxacin and sulfamethoxazole to Selenastrum capriicornutum[D]. Guangzhou:Jinan University, 2011(in Chinese).
    [26] HALLINGSØRENSEN B. Algal toxicity of antibacterial agents used in intensive farming.[J]. Chemosphere, 2000, 40(7):731-739.
    [27] BRADEL B G, PREIL W, JESKE H. Remission of the Free-branching Pattern of Euphorbia pulcherrima by tetracycline treatment[J]. Journal of Phytopathology, 2000, 148(11/12):587-590.
    [28] 王明兹,施巧琴,庄惠如,等. 紫球藻对抗生素的生物学效应[J]. 福建师范大学学报(自然科学版), 2004, 20(3):59-62. WANG M Z,SHI Q Q,ZHUANG H R,et al. The biological effects of Porphyridium to antibiotics[J]. Journal of Fujian Normal University(Natural Science Edition), 2004, 20(3):59-62(in Chinese).
    [29] 周文礼,王悠,肖慧,等. 三种海洋微藻叶绿素a含量对抗生素胁迫的响应变化[J]. 中国海洋大学学报(自然科学版), 2007, 37(6):957-960. ZHOU W L,WANG Y,XIAO H,et al. Response of chlorophyll-a levels of different marine microalgae to antibiotic stress[J]. Periodical of Ocean University of China, 2007, 37(6):957-960(in Chinese).
    [30] 管超,毛杰. 抗生素对水生态环境毒性效应研究概述[J]. 资源节约与环保, 2014, 89(2):136. GUAN C,MAO J. Overview of studies on the toxic effects of antibiotics on aquatic environment[J]. Resources Economization & Environment Protection, 2014

    , 89(2):136(in Chinese).

    [31] LAMPEN J O, ARNOW P. Inhibition of algae by nystatin[J]. Journal of Bacteriology, 1961, 82(2):247-251.
    [32] WANG S, WANG X, POON K, et al. Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa[J]. Chemosphere, 2013, 92(11):1498-1505.
    [33] PAN X, ZHANG D, CHEN X, et al. Effects of levofloxacin hydrochlordie on photosystem Ⅱ activity and heterogeneity of Synechocystis sp.[J]. Chemosphere, 2009, 77(3):413-418.
    [34] RAVENEL J, PELTIER G. Inhibition of chlororespiration by myxothiazol and antimycin A in Chlamydomonas reinhardtii[J]. Photosynthesis Research, 1991, 28(3):141-148.
    [35] SEOANE M, ESPERANZA M, CID Á. Cytotoxic effects of the proton pump inhibitor omeprazole on the non-target marine microalga, Tetraselmis suecica[J]. Aquatic Toxicology, 2017, 191:62-67.
    [36] 郭晋,陈作雁,石林,等. 光催化复合氧化技术对环丙沙星和磺胺甲恶唑的深度处理[J]. 环境化学, 2019, 38(12):2757-2767.

    GUO J, CHEN Z Y, SHI L, et al. Advanced treatment of ciprofloxacin and sulfamethoxazole by the combined photocatalysis and oxidation technology[J]. Environmental Chemistry, 2019, 38(12):2757-2767(in Chinese).

    [37] VAN DOORSLAER X, ISRAEL-DENEKE H, JO D, et al. Heterogeneous photocatalysis of moxifloxacin in water:Chemical transformation and ecotoxicity[J]. Chemosphere, 2015, 119S(SI):S75-S80.
    [38] LOFRANO G, LIBRALATO G, CASABURI A, et al. Municipal wastewater spiramycin removal by conventional treatments and heterogeneous photocatalysis[J]. Science of the Total Environment, 2018, 624:461-469.
    [39] LOFRANO G. Photocatalytic degradation of the antibiotic chloramphenicol and effluent toxicity effects[J]. Ecotoxicology and Environmental Safety, 2016, 123:65-71.
    [40] GONG H, CHU W. Determination and toxicity evaluation of the generated products in sulfamethoxazole degradation by UV/CoFe2O4/TiO2[J]. Journal of Hazardous Materials, 2016, 314:197-203.
    [41] SAYED M, ARANDA A, NOOR S S, et al. Narrowing the band gap of TiO2 by co-doping with Mn2+ and Co2+ for efficient photocatalytic degradation of enoxacin and its additional peroxidase like activity:A mechanistic approach[J]. Journal of Molecular Liquids, 2018, 272:403-412.
    [42] LOFRANO G, MAURIZIO C, CEYDA-SENEM U D, et al. An integrated chemical and ecotoxicological assessment for the photocatalytic degradation of vancomycin[J]. Environmental Technology, 2013, 35(10):1234-1242.
    [43] BARAN W, JOLANTA S, WŁADYSŁAW W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions[J]. Chemosphere, 2006, 65(8):1295-1299.
    [44] 师雯洁. 磷钨酸-钛复合催化剂对水体中磺胺类物质的降解特性研究[D]. 西安:西安理工大学, 2018. SHI W J. The study of distribution characteristics of sulfonamides in water by H3PW12O40

    -TiO2 composite catalyst[D]. Xi'an:Xi'an University of Technology, 2018(in Chinese).

    [45] REN Z Q, CHEN F Y, WEN K X, et al. Enhanced photocatalytic activity for tetracyclines degradation with Ag modified g-C3N4 composite under visible light[J]. Journal of Photochemistry &Photobiology, A:Chemistry, 2020, 389:112217.
    [46] 邓垚成. 基于石墨相氮化碳的高效光催化剂制备及其去除水体污染物的应用和机理研究[D]. 长沙:湖南大学, 2018. DENG Y C. The preparation of highly efficient graphitic carbon nitride based photocatalysts for the removal of aqueous pollutants and mechanism study[D]. Changsha:Hunan University of Science and Technology, 2018(in Chinese).
    [47] CHEN J Q, GUO R X. Access the toxic effect of the antibiotic cefradine and its UV light degradation products on two freshwater algae[J]. Journal of Hazardous Materials, 2012, 209/210:520-523.
    [48] THIAGARAJAN V, LOKESHWARI N, SEENIVASAN R, et al. Tetracycline affects the toxicity of P25 n-TiO2 towards marine microalgae Chlorella sp.[J]. Environmental Research, 2019, 179(Pt A):108808.
    [49] XU D M, XIAO Y P, PAN H, et al. Toxic effects of tetracycline and its degradation products on freshwater green algae[J]. Ecotoxicology and Environmental Safety, 2019, 174:43-47.
    [50] 白英俊,李国瑞,黄凤兰,等. 活性氧与植物抗氧化系统研究进展[J]. 安徽农业科学, 2017, 45(36):1-3.

    BAI Y J, LI G R, HUANG F L, et al. Research progress of reactive oxygen species and plant antioxidant system[J]. Journal of Anhui Agricultural Sciences, 2017, 45(36):1-3(in Chinese).

    [51] 刘杰. LaVO4复合材料的构建及光催化降解环境污染物研究[D]. 镇江:江苏大学, 2019. LIU J. Construction of LaVO4 composites materials and their photocatalytic activities in degradation for pollutants[D]. Zhenjiang:Jiangsu University, 2019(in Chinese).
    [52] 汪琼. 铋系异质结的制备及对混合抗生素的光催化降解研究[D]. 南京:南京师范大学, 2018. WANG Q. Study on synthesis of bismuth heterojunction and photocatalytic degradation of mixed antibiotics[D]. Nanjing:Nanjing Normal University, 2018(in Chinese).
    [53] 肖华花. 磺胺二甲嘧啶在水环境中的光化学行为及光催化降解研究[D]. 广州:广东工业大学, 2015. XIAO H H. Study on photochemical behavior and photocatalytic degradation of sulfamethazine in aqueous environment[D]. Guangzhou:Guangdong University of Technology, 2015(in Chinese).
  • 加载中
计量
  • 文章访问数:  3191
  • HTML全文浏览数:  3191
  • PDF下载数:  89
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-24

光催化降解对抗生素藻类毒性效应影响研究进展

    通讯作者: 鲁金凤, E-mail: lujinfeng@nankai.edu.cn
  • 南开大学环境科学与工程学院, 天津, 300350
基金项目:

国家自然科学基金(51878357),天津市自然科学基金(18JCYBJC23200)和南开大学本科生创新科研"百项工程"计划(201910055809)资助.

摘要: 抗生素滥用带来环境中残留抗生素及其抗性基因的问题,近年来已成为全球关注的热点问题.光催化氧化技术是当前研究领域广泛采用的有效降解水环境中残留抗生素的热门方法;但光催化氧化无法使水环境中抗生素完全矿化,存在生态风险,探明光催化降解抗生素对其藻类毒理效应影响及内在机制,对研发高效、安全的光催化技术具有重要意义.本文在总结水环境中残留抗生素的藻类毒性检测方法和毒性效应的基础上,分析了光催化降解对抗生素藻类毒性效应的影响及其内在机制,并总结了不同抗生素的光催化反应及降解产物,讨论了两者与藻类毒性效应之间可能存在的关系,旨在为实现高效、安全光催化技术的可控设计提供思路.

English Abstract

参考文献 (53)

目录

/

返回文章
返回