四溴双酚A在土壤中的降解转化及残留研究进展

蔡蕊, 王文姬, 许航, 季荣. 四溴双酚A在土壤中的降解转化及残留研究进展[J]. 环境化学, 2021, (1): 102-110. doi: 10.7524/j.issn.0254-6108.2020021001
引用本文: 蔡蕊, 王文姬, 许航, 季荣. 四溴双酚A在土壤中的降解转化及残留研究进展[J]. 环境化学, 2021, (1): 102-110. doi: 10.7524/j.issn.0254-6108.2020021001
CAI Rui, WANG Wenji, XU Hang, JI Rong. Degradation, transformation, and residue formation of tetrabromobisphenol A (TBBPA) in soil: A review[J]. Environmental Chemistry, 2021, (1): 102-110. doi: 10.7524/j.issn.0254-6108.2020021001
Citation: CAI Rui, WANG Wenji, XU Hang, JI Rong. Degradation, transformation, and residue formation of tetrabromobisphenol A (TBBPA) in soil: A review[J]. Environmental Chemistry, 2021, (1): 102-110. doi: 10.7524/j.issn.0254-6108.2020021001

四溴双酚A在土壤中的降解转化及残留研究进展

    通讯作者: 季荣, E-mail: ji@nju.edu.cn
  • 基金项目:

    国家自然科学基金(31861133003,21477052)和中国工程院咨询研究项目(2019-XZ-24)资助.

Degradation, transformation, and residue formation of tetrabromobisphenol A (TBBPA) in soil: A review

    Corresponding author: JI Rong, ji@nju.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (31861133003, 21477052) and the Chinese Academy of Engineering (2019-XZ-24).
  • 摘要: 四溴双酚A (tetrabromobisphenol A,TBBPA)是全球生产量最大的溴代阻燃剂,广泛应用于电子产品和塑料等高分子材料的生产中.由于高的亲脂性及环境稳定性,TBBPA在土壤中易于累积.土壤作为污染物主要的汇之一,污染物在土壤中的环境过程和归趋对正确评价污染物的环境风险至关重要.本文综述了土壤中TBBPA在不同氧化还原条件(无氧条件,连续无氧-有氧条件和有氧条件)下、植物(芦苇和水稻)或蚯蚓(Metaphire guillelmiEisenia fetida)存在时的降解、矿化、代谢路径、不可提取态残留(non-extractable residues,NERs)形成和稳定性,以及相关微观机理.TBBPA在无氧条件下脱溴降解为双酚A,并稳定地存在于无氧土壤中.有氧土壤中的TBBPA经过甲基化、本位取代,以及烷基链断裂生成多种代谢产物.植物和蚯蚓会改变土壤中TBBPA的归趋,具体表现为明显降低TBBPA矿化,增加甲基化(形成更多甲基醚类代谢产物),减少NERs形成.TBBPA及其代谢产物可以和土壤中有机质以酯键和醚键的方式形成NERs.土壤氧化还原状态的改变会使NERs释放TBBPA及其代谢产物,但水稻根系分泌物添加到土壤中对NERs的释放没有显著影响.未来需要进一步研究TBBPA在土壤中转化的微生物学机制、土壤中NERs的形成机制、在生物体内的转化体制、以及土壤中不同形态NERs和生物体内NERs的稳定性和生物效应等,为全面准确评估TBBPA的环境风险提供科学依据.
  • 加载中
  • [1] COVACI A, VOORSPOELS S, ABDALLAH M A, et al. Analytical and environmental aspects of the flame retardant tetrabromobisphenol A and its derivatives[J]. Journal of Chromatography A, 2009, 1216(3):346-363.
    [2] HARRAD S, ABDALLAH M A, ROSE N L, et al. Current-use brominated flame retardants in water, sediment, and fish from English lakes[J]. Environmental Science & Technology, 2009, 43(24):9077-9083.
    [3] SHI T, CHEN S J, LUO X J, et al. Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from southern China[J]. Chemosphere, 2009, 74(7):910-916.
    [4] MCCORMICK J M, PAIVA M S, HÄGGBLOM M M, et al. Embryonic exposure to tetrabromobisphenol A and its metabolites, bisphenol A and tetrabromobisphenol A dimethyl ether disrupts normal zebrafish (Danio rerio) development and matrix metalloproteinase expression[J]. Aquatic Toxicology, 2010, 100(3):255-262.
    [5] MORF L S, TREMP J, GLOOR R, et al. Brominated flame retardants in waste electrical and electronic equipment:Substance flows in a recycling plant[J]. Environmental Science & Technology, 2005, 39(22):8691-8699.
    [6] ÖBERG T, ÖBERG K, WARMAN K, et al. Distribution and levels of brominated flame retardants in sewage sludge[J]. Chemosphere, 2002, 48(8):805-809.
    [7] 王俊霞, 刘莉莉, 郭杰, 等. 溴代阻燃剂在中国川藏地区的污染和分布特征[J]. 环境科学学报, 2014, 34(11):2823-2831.

    WANG J X, LIU L L, GUO J, et al. Levels and distribution of brominated flame retardants in Sichuan-Tibet region, China[J]. Acta Scientiae Circumstantiae, 2014,34(11):2823-2831(in Chinese).

    [8] KÄSTNER M, NOWAK K M, MILTNER A, et al. Classification and modelling of nonextractable residue (NER) formation of xenobiotics in soil-a synthesis[J]. Critical Reviews in Environmental Science & Technology, 2014, 44(19):2107-2171.
    [9] ANDREU V, PICÓ Y. Determination of pesticides and their degradation products in soil:Critical review and comparison of methods[J]. TrAC Trends in Analytical Chemistry, 2004, 23(10/11):772-789.
    [10] TONG F, GU X Y, GU C, et al. Insights into tetrabromobisphenol A adsorption onto soils:Effects of soil components and environmental factors[J]. Science of the Total Environment, 2015, 536:582-588.
    [11] CHEN X, GU J Q, WANG Y F, et al. Fate and O-methylating detoxification of tetrabromobisphenol A (TBBPA) in two earthworms (Metaphire guillelmi and Eisenia fetida)[J]. Environmental Pollution, 2017, 227:526-533.
    [12] GU J Q, JING Y Y, MA Y N, et al. Effects of the earthworm Metaphire guillelmi on the mineralization, metabolism, and bound-residue formation of tetrabromobisphenol A (TBBPA) in soil[J]. Science of the Total Environment, 2017, 595:528-536.
    [13] LI Y N, ZHOU Q X, WANG Y Y, et al. Fate of tetrabromobisphenol A and hexabromocyclododecane brominated flame retardants in soil and uptake by plants[J]. Chemosphere, 2011, 82(2):204-209.
    [14] LI H W, HU Y X, SUN Y X, et al. Bioaccumulation and translocation of tetrabromobisphenol A and hexabromocyclododecanes in mangrove plants from a national nature reserve of Shenzhen City, South China[J]. Environment International, 2019, 129:239-246.
    [15] SUN F F, KOLVENBACH B A, NASTOLD P, et al. Degradation and metabolism of tetrabromobisphenol A (TBBPA) in submerged soil and soil-plant systems[J]. Environmental Science & Technology, 2014, 48(24):14291-14299.
    [16] WANG S F, CAO S Q, WANG Y F, et al. Fate and metabolism of the brominated flame retardant tetrabromobisphenol A (TBBPA) in rice cell suspension culture[J]. Environmental Pollution, 2016, 214:299-306.
    [17] LIU A F, ZHAO Z S, QU G B, et al. Transformation/degradation of tetrabromobisphenol A and its derivatives:A review of the metabolism and metabolites[J]. Environmental Pollution, 2018, 243:1141-1153.
    [18] YU Y J, YU Z L, CHEN H B, et al. Tetrabromobisphenol A:Disposition, kinetics and toxicity in animals and humans[J]. Environmental Pollution, 2019, 253:909-917.
    [19] KURAMOCHI H, KAWAMOTO K, MIYAZAKI K, et al. Determination of physicochemical properties of tetrabromobisphenol A[J]. Environmental Toxicology and Chemistry, 2008, 27(12):2413-2418.
    [20] PENG X X, ZHANG Z L, LUO W S, et al. Biodegradation of tetrabromobisphenol A by a novel Comamonas sp. strain, JXS-2-02, isolated from anaerobic sludge[J]. Bioresource Technology, 2013, 128:173-179.
    [21] 谢慧,王军,王彦红,等. 四溴双酚A在土壤中的降解动态及其对土壤微生物数量和酶活性的影响[J]. 环境化学, 2017, 36(7):1614-1621.

    XIE H, WANG J, WANG Y H, et al. Degradation dynamics of tetrabromobisphenol A in soil and in effects on soil microorganisms and enzymatic activity[J]. Environmental Chemistry, 2017,36(7):1614-1621(in Chinese).

    [22] LIU J, WANG Y F, JIANG B Q, et al. Degradation, metabolism, and bound-residue formation and release of tetrabromobisphenol A in soil during sequential anoxic-oxic incubation[J]. Environmental Science & Technology, 2013, 47(15):8348-8354.
    [23] LI F J, WANG J J, JIANG B Q, et al. Fate of tetrabromobisphenol A (TBBPA) and formation of ester- and ether-linked bound residues in an oxic sandy soil[J]. Environmental Science & Technology, 2015, 49(21):12758-12765.
    [24] ARMENANTE P M, KAFKEWITZ D, LEWANDOWSKI G A, et al. Anaerobic-aerobic treatment of halogenated phenolic compounds[J]. Water Research, 1999, 33(3):681-692.
    [25] LI M T, HAO L L, SHENG L X, et al. Identification and degradation characterization of hexachlorobutadiene degrading strain Serratia marcescens HL1[J]. Bioresource Technology, 2008, 99(15):6878-6884.
    [26] UNGER I M, KENNEDY A C, MUZIKA R. Flooding effects on soil microbial communities[J]. Applied Soil Ecology, 2009, 42(1):1-8.
    [27] NYHOLM J R, LUNDBERG C, ANDERSSON P L. Biodegradation kinetics of selected brominated flame retardants in aerobic and anaerobic soil[J]. Environmental Pollution, 2010, 158(6):2235-2240.
    [28] MCAVOY D C, PITTINGER C A, WILLIS A M. Biotransformation of tetrabromobisphenol A (TBBPA) in anaerobic digester sludge, soils, and freshwater sediments[J]. Ecotoxicology and Environmental Safety, 2016, 131:143-150.
    [29] ARBELI Z, RONEN Z. Enrichment of a microbial culture capable of reductive debromination of the flame retardant tetrabromobisphenol A, and identification of the intermediate metabolites produced in the process[J]. Biodegradation, 2003, 14(6):385-395.
    [30] RAVIT B, EHRENFELD J G, HÄGGBLOM M M. Salt marsh rhizosphere affects microbial biotransformation of the widespread halogenated contaminant tetrabromobisphenol A (TBBPA)[J]. Soil Biology and Biochemistry, 2005, 37(6):1049-1057.
    [31] VOORDECKERS J W, FENNELL D E, JONES K, et al. Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments[J]. Environmental Science & Technology, 2002, 36(4):696-701.
    [32] CHANG B V, YUAN S Y, REN Y L. Anaerobic degradation of tetrabromobisphenol A in river sediment[J]. Ecological Engineering, 2012, 4973-4976.
    [33] PENG X X, ZHANG Z L, ZHAO Z L, et al. 16S ribosomal DNA clone libraries to reveal bacterial diversity in anaerobic reactor-degraded tetrabromobisphenol A[J]. Bioresource Technology, 2012, 112:75-82.
    [34] RONEN Z, ABELIOVICH A. Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A[J]. Applied and Environmental Microbiology, 2000, 66(6):2372-2377.
    [35] LI F J, JIANG B Q, NASTOLD P, et al. Enhanced transformation of tetrabromobisphenol A by nitrifiers in nitrifying activated sludge[J]. Environmental Science & Technology, 2015, 49(7):4283-4292.
    [36] CHANG B V, YUAN S Y, REN Y L. Aerobic degradation of tetrabromobisphenol A by microbes in river sediment[J]. Chemosphere, 2012, 87(5):535-541.
    [37] GEORGE K W, HAGGBLOM M M. Microbial O-methylation of the flame retardant tetrabromobisphenol A[J]. Environmental Science & Technology, 2008, 42(15):5555-5561.
    [38] WANG S F, SUN F F, WANG Y F, et al. Formation, characterization, and mineralization of bound residues of tetrabromobisphenol A (TBBPA) in silty clay soil under oxic conditions[J]. Science of the Total Environment, 2017, 599/600:332-339.
    [39] MICHAŁOWICZ J. Bisphenol A-Sources, toxicity and biotransformation[J]. Environmental Toxicology and Pharmacology, 2014, 37(2):738-758.
    [40] 张静,严静娜,郭悦宁,等. 阻燃剂四溴双酚A的厌氧-好氧生物降解[J]. 环境化学, 2016, 35(9):1776-1784.

    ZHANG J, YAN J N, GUO Y N, et al. Anaerobic and aerobic biodegradation of flame retardant tetrabromobisphenol A[J]. Environmental Chemistry, 2016, 35(9):1776-1784(in Chinese).

    [41] GABRIEL F L P, CYRIS M, GIGER W, et al. ipso-Substitution:A general biochemical and biodegradation mechanism to cleave α-quaternary alkylphenols and bisphenol A[J]. Chemistry & Biodiversity, 2007, 4(9):2123-2137.
    [42] KOLVENBACH B, SCHLAICH N, RAOUI Z, et al. Degradation pathway of bisphenol A:Does ipso substitution apply to phenols containing a quaternary α-carbon structure in the para position?[J]. Applied and Environmental Microbiology, 2007, 73(15):4776-4784.
    [43] LIU A F, ZHAO Z S, QU G B, et al. Identification of transformation/degradation products of tetrabromobisphenol A and its derivatives[J]. TrAC Trends in Analytical Chemistry, 2019, 111:85-99.
    [44] AN T C, ZU L, LI G Y, et al. One-step process for debromination and aerobic mineralization of tetrabromobisphenol A by a novel Ochrobactrum sp. T isolated from an e-waste recycling site[J]. Bioresource Technology, 2011, 102(19):9148-9154.
    [45] HOU X W, YU M, LIU A F, et al. Biotransformation of tetrabromobisphenol A dimethyl ether back to tetrabromobisphenol A in whole pumpkin plants[J]. Environmental Pollution, 2018, 241:331-338.
    [46] LEIGH M B, FLETCHER J S, FU X, et al. Root turnover:An important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants[J]. Environmental Science & Technology, 2002, 36(7):1579-1583.
    [47] XIAO X M, BOLES S, FROLKING S, et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2006, 100(1):95-113.
    [48] JOUANNEAU Y, WILLISON J C, MEYER C, et al. Stimulation of pyrene mineralization in freshwater sediments by bacterial and plant bioaugmentation[J]. Environmental Science & Technology, 2005, 39(15):5729-5735.
    [49] LI F J, WANG J J, NASTOLD P, et al. Fate and metabolism of tetrabromobisphenol A in soil slurries without and with the amendment with the alkylphenol degrading bacterium Sphingomonas sp. strain TTNP3[J]. Environmental Pollution, 2014, 193:181-188.
    [50] 侯兴旺, 刘稷燕, 江桂斌. 典型卤代有机污染物在植物体内的代谢过程[J]. 中国科学:化学, 2018, 48(10):1236-1246.

    HOU X W, LIU J Y, JIANG G B. Metabolism of typical halogenated organic pollutants in plant[J]. Sci Sin Chim, 2018, 48(10):1236-1246(in Chinese).

    [51] REA P A. Plant ATP-binding cassette transporter[J]. Annual Review of Plant Biology, 2007, 58:347-375.
    [52] VAN GROENIGEN J W, LUBBERS I M, VOS H M J, et al. Earthworms increase plant production:A meta-analysis[J]. Scientific Reports, 2015, 4:6365. DOI:10.1038/srep06365.
    [53] HICKMAN Z A, REID B J. Earthworm assisted bioremediation of organic contaminants[J]. Environment International, 2008, 34(7):1072-1081.
    [54] GU J Q, CHEN X, WANG Y F, et al. Bioaccumulation, physiological distribution, and biotransformation of tetrabromobisphenol A (TBBPA) in the geophagous earthworm Metaphire guillelmi-hint for detoxification strategy[J]. Journal of Hazardous Materials, 2020, 388:122027. DOI:/10.1016/j.jhazmat.2020.122027
    [55] CHEN X, GU X Y, ZHAO X P, et al. Species-dependent effects of earthworms on the fates and bioavailability of tetrabromobisphenol A and cadmium coexisted in soils[J]. Science of the Total Environment, 2019, 658:1416-1422.
    [56] WANG F, JI R, JIANG Z, et al. Species-dependent effects of biochar amendment on bioaccumulation of atrazine in earthworms[J]. Environmental Pollution, 2014, 186:241-247.
    [57] FVHR F, OPHOFF H, BURAUEL P, et al. Modification of definition of bound residues//FUHR F, OPHOFF H (eds). Pesticide bound residues in soil[M]. Weinheim:Wiley, 1998:175-176.
    [58] SEN GUPTA S, BHATTACHARYYA K G. Kinetics of adsorption of metal ions on inorganic materials:A review[J]. Advances in Colloid and Interface Science, 2011, 162(1/2):39-58.
    [59] GEVAO B, SEMPLE K T, JONES K C. Bound pesticide residues in soils:A review[J]. Environmental Pollution, 2000, 108(1):3-14.
    [60] BARRACLOUGH D, KEARNEY T, CROXFORD A. Bound residues:Environmental solution or future problem?[J]. Environmental Pollution, 2005, 133(1):85-90.
    [61] TONG F, GU X Y, GU C, et al. Stimulation of tetrabromobisphenol A binding to soil humic substances by birnessite and the chemical structure of the bound residues[J]. Environmental Science & Technology, 2016, 50(12):6257-6266.
    [62] 王松凤,吴玄,王麒麟,等. 土壤中四溴双酚A不可提取态残留的降解转化[J]. 科学通报, 2019, 64(33):3458-3466.

    WANG S F, WU X, WANG Q L, et al. The degradation and transformation of TBBPA-derived NER in soil[J]. Chinese Science Bulletin,2019, 64(33):3458-3466(in Chinese).

    [63] WANG S F, LING X H, WU X, et al. Release of tetrabromobisphenol A (TBBPA)-derived non-extractable residues in oxic soil and the effects of the TBBPA-degrading bacterium Ochrobactrum sp. strain T[J]. Journal of Hazardous Materials, 2019, 378:120666. DOI:10.1016/j.jhazmat.2019.05.059.
  • 加载中
计量
  • 文章访问数:  3979
  • HTML全文浏览数:  3979
  • PDF下载数:  154
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-10
蔡蕊, 王文姬, 许航, 季荣. 四溴双酚A在土壤中的降解转化及残留研究进展[J]. 环境化学, 2021, (1): 102-110. doi: 10.7524/j.issn.0254-6108.2020021001
引用本文: 蔡蕊, 王文姬, 许航, 季荣. 四溴双酚A在土壤中的降解转化及残留研究进展[J]. 环境化学, 2021, (1): 102-110. doi: 10.7524/j.issn.0254-6108.2020021001
CAI Rui, WANG Wenji, XU Hang, JI Rong. Degradation, transformation, and residue formation of tetrabromobisphenol A (TBBPA) in soil: A review[J]. Environmental Chemistry, 2021, (1): 102-110. doi: 10.7524/j.issn.0254-6108.2020021001
Citation: CAI Rui, WANG Wenji, XU Hang, JI Rong. Degradation, transformation, and residue formation of tetrabromobisphenol A (TBBPA) in soil: A review[J]. Environmental Chemistry, 2021, (1): 102-110. doi: 10.7524/j.issn.0254-6108.2020021001

四溴双酚A在土壤中的降解转化及残留研究进展

    通讯作者: 季荣, E-mail: ji@nju.edu.cn
  • 污染控制与资源化研究国家重点实验室, 南京大学环境学院, 南京, 210023
基金项目:

国家自然科学基金(31861133003,21477052)和中国工程院咨询研究项目(2019-XZ-24)资助.

摘要: 四溴双酚A (tetrabromobisphenol A,TBBPA)是全球生产量最大的溴代阻燃剂,广泛应用于电子产品和塑料等高分子材料的生产中.由于高的亲脂性及环境稳定性,TBBPA在土壤中易于累积.土壤作为污染物主要的汇之一,污染物在土壤中的环境过程和归趋对正确评价污染物的环境风险至关重要.本文综述了土壤中TBBPA在不同氧化还原条件(无氧条件,连续无氧-有氧条件和有氧条件)下、植物(芦苇和水稻)或蚯蚓(Metaphire guillelmiEisenia fetida)存在时的降解、矿化、代谢路径、不可提取态残留(non-extractable residues,NERs)形成和稳定性,以及相关微观机理.TBBPA在无氧条件下脱溴降解为双酚A,并稳定地存在于无氧土壤中.有氧土壤中的TBBPA经过甲基化、本位取代,以及烷基链断裂生成多种代谢产物.植物和蚯蚓会改变土壤中TBBPA的归趋,具体表现为明显降低TBBPA矿化,增加甲基化(形成更多甲基醚类代谢产物),减少NERs形成.TBBPA及其代谢产物可以和土壤中有机质以酯键和醚键的方式形成NERs.土壤氧化还原状态的改变会使NERs释放TBBPA及其代谢产物,但水稻根系分泌物添加到土壤中对NERs的释放没有显著影响.未来需要进一步研究TBBPA在土壤中转化的微生物学机制、土壤中NERs的形成机制、在生物体内的转化体制、以及土壤中不同形态NERs和生物体内NERs的稳定性和生物效应等,为全面准确评估TBBPA的环境风险提供科学依据.

English Abstract

参考文献 (63)

返回顶部

目录

/

返回文章
返回