-
吡啶(pyridine,C5H5N)是一种有毒害的芳香族含氮杂环化合物[1],也是一类重要的化工原料和有机合成中间体,被广泛应用于医药、农药、塑料、染料、合成树脂等领域,此外还可用作溶剂、实验试剂和消毒剂等[2-4]。吡啶结构稳定,代谢过程不易受到破坏,生物降解性差,具有致畸性、致癌性、致突变性,已列入世界卫生组织发布的致癌物2B类清单,由此使得吡啶成为环境领域中备受关注的一类污染物[5]。含吡啶废水毒性大,如果被排放到水体、土壤中会通过食物链在生物体内富集和积累,对生态环境和人体健康造成潜在危害。因此加强对吡啶废水的治理迫在眉睫。
目前针对吡啶废水的治理方法有膜分离法、混凝沉降法、电化学法、微生物降解法和物理吸附法等[6-9]。其中,物理吸附法因处理效果好、操作简单,在工业有机废水处理中备受青睐。其原理是利用吸附剂比表面积、特定官能团的吸附作用去除水中污染物,所以筛选并获得具有良好吸附性能的材料是关键[10]。目前研究的材料集中于活性炭、碳纳米管、石墨烯、无定形碳和一些功能性碳材料等。许多学者对于这些材料进行了深入研究。但人们发现通过复杂过程合成或制备的这些碳材料,不仅消耗了能源、其它化学试剂等,而且成本高,还有可能产生二次污染,因而受到很多专家质疑。因此,因地制宜地探寻更多的新型、经济型材料是吸附材料发展的必由之路。
生物炭作为一种新型低成本环保吸附材料,具有比表面积大、孔隙结构丰富、吸附能力强、环境稳定性好等特点,而被广泛用于去除水体、土壤中的污染物[11-15]。生物炭制备原料来源广泛,应用方法环保高效,适用于去除多类型的有机污染物,大量研究表明,水中有机污染物在介质上的吸附作用包括分配作用和表面吸附作用。生物炭的制备技术成熟,但在生物炭制备原料选材方面没有一致的标准,且有关生物炭吸附有机污染物的吸附机理还有待深入研究。目前对生物炭吸附杂环芳香性有机化合物的研究较多[16-18],基于吡啶本身的性质,许多制备的生物炭吸附效果差,从而少见生物炭吸附吡啶的研究报道[19-21]。
加拿大一枝黄花(Solidago canadensis L.)是一种恶性入侵检疫性杂草,因其广泛蔓延并难以控制,被称为生态杀手,严重威胁我国的农业生产[22-23]。如何防控加拿大一枝黄花已成为棘手的难题。特别是割除后的中晚期加拿大一枝黄花生物量大,难以环保处置。但中晚期加拿大一枝黄花的纤维素、半纤维素、木质素含量高,分别为45.55%、15.86%、11.27%,是制备生物炭的优等级原材料[24]。
本研究从解决加拿大一枝黄花的危害着手,变废为宝,以中晚期加拿大一枝黄花茎秆为材料,开展了生物炭的制备、表征,并将其应用于废水中吡啶污染物的吸附去除,同时采用响应面法优化其吸附工艺,为中晚期加拿大一枝黄花的防控及吡啶废水的有效处理提供新思路。
加拿大一枝黄花茎秆生物炭的制备及其对吡啶的吸附
Preparation of biochar from Solidago canadensis L. stalk and its pyridine adsorption performance
-
摘要: 以中晚期生长的加拿大一枝黄花茎秆为材料,在热解温度400—650 ℃下制备生物炭,探究了生物炭对吡啶的去除效果。采用红外光谱、扫描电镜、比表面积测定仪和X射线衍射仪表征生物炭的微观结构,考察吡啶的初始浓度、反应时间、生物炭用量等对其吸附性能的影响,探讨了其吸附动力学和吸附等温曲线。结果表明,随着炭化温度升高,生物炭的含氧官能团、芳香化程度和比表面积增大;烧结温度为600 ℃制备的生物炭结构规则,稳定性最佳。当吡啶浓度为100 mg·L−1时,生物炭的用量为2 g·L−1时,600 ℃所制生物炭的吸附性能最佳,反应2 h后达到吸附平衡,吸附容量为32.9 mg·g−1。吡啶的吸附符合伪一级动力学模型,对吸附等温线进行分析可得,Langmuir模型能更好地拟合生物炭对吡啶的吸附过程,生物炭吸附吡啶以单分子层吸附为主。600 ℃下制备的生物炭对吡啶的最大吸附量高达144.44 mg·g−1。以600 ℃所制生物炭为吸附剂的响应面优化结果表明,生物炭投加量4 g·L−1、吡啶初始浓度102.10 mg·L−1、吸附时间2.89 h的最优条件下,吡啶的去除率最大,达到97.92%,表明加拿大一枝黄花是潜在的制备优异吸附性能生物炭的原料。Abstract: Biochar was prepared with Solidago canadensis L. of middle and late phase at the temperature of 400—650 ℃ and its pyridine adsorption capability was investigated. The micro-structures of the biochar were characterized by infrared spectroscopy, scanning electron microscopy, specific surface area analyzer and X-ray diffraction. The effects of the initial pyridine concentration, reaction time and the dosage on the adsorption properties of biochar were discussed. The adsorption kinetics and isothermal curves were also investigated. Results showed that the oxygen-containing functional groups, aromatization degree, and specific surface area of the biochar increased with the increase of carbonization temperature.The biochar prepared with a sintering temperature of 600 ℃ had a regular structure and the best stability. When the concentration of pyridine was 100 mg·L−1 and the amount of biochar was 2 g·L−1, the adsorption performance of biochar produced at 600 ℃ was the best and after 2 h of reaction, the adsorption equilibrium was reached and the adsorption capacity was 32.9 mg·g−1. The adsorption of pyridine conformed to a pseudo-first-order kinetic model. The analysis of the adsorption isotherm showed that the Langmuir model can better fit the adsorption process of pyridine by biochar. Biochar adsorption of pyridine was mainly monolayer adsorption. The maximum adsorption capacity of pyridine by biochar prepared at 600 ℃ was as high as 144.44 mg·g−1. The response surface optimization results using biochar prepared at 600 ℃ as the adsorbent showed that under the optimal conditions of 4 g·L−1 of biochar, an initial concentration of pyridine of 102.10 mg·L−1, and an adsorption time of 2.89 h, the pyridine removal rate was the highest, reaching 97.92%. It was indicated that Solidago canadensis L.was a potential raw material for preparing biochar with excellent adsorption performance.
-
Key words:
- Solidago canadensis L. /
- biochar /
- pyridine /
- adsorption /
- response surface optimization
-
表 1 不同炭化温度下制备的生物炭微孔结构
Table 1. Microporous structure of biochar from the stalk of Solidago canadensis L.
样品
SampleBET比表面积/(m2 ·g−1)
BET Surface Area微孔体积/(cm3 ·g−1)
Micropore volume平均孔径/nm
Average pore sizeSCL-400 0.80 0.001171 19.63 SCL-500 126.51 0.002078 18.83 SCL-600 356.27 0.116705 19.55 SCL-650 382.10 0.122996 19.56 表 2 吸附动力学模型参数
Table 2. Pyridine adsorption Kinetic parameters of biochar from the stalk of Solidago canadensis L.
样品
Sample伪一级动力学模型Pseudo-first-order 伪二级动力学模型Pseudo-second-order K1/h−1 Qe/(mg·g−1) R2 K2/(g·mg−1h−1) Qe/(mg·g−1) R2 SCL-400 2.68 22.33 0.974 0.16 24.15 0.978 SCL-500 3.29 31.60 0.985 0.16 33.58 0.967 SCL-600 4.23 33.13 0.994 0.23 34.73 0.987 SCL-650 3.20 32.11 0.988 0.15 34.15 0.970 表 3 吸附等温曲线模型参数
Table 3. Pyridine isothermal adsorption curve of biochar from the stalk of Solidago canadensis L.
样品
SampleLangmuir模型 Freundlich模型 Qm/(mg·g−1) KL/(L·mg−1) R2 n KF/(L·mg−1) R2 SCL-400 59.14 0.005 0.996 1.852 1.644 0.990 SCL-500 89.56 0.005 0.999 1.811 2.307 0.988 SCL-600 144.44 0.003 0.999 1.535 1.629 0.995 SCL-650 117.62 0.003 0.965 1.594 1.499 0.981 表 4 Box-Behnken设计因子及水平
Table 4. Box-Behnken design factors and levels
编号
Number因子
Factor水平Level −1 0 1 A 初始浓度/(mg·L−1) 50 100 150 B 生物炭投加量/(g·L−1) 4 5 6 C 吸附时间/h 2 3 4 表 5 Box-Behnken试验回归分析结果
Table 5. The results of Box-Behnken regression analysis
项目
Item估计值
Estimate标准误差
Standard errort比
t ratio概率>|t|
Probability>|t|显著性
Significant截距 96.047 0.604 158.890 <0.0001* 极显著 初始浓度 1.840 0.370 4.970 0.0042* 极显著 吸附时间 −0.285 0.370 −0.770 0.4761 不显著 投加量 −1.713 0.370 −4.630 0.0057* 极显著 初始浓度*吸附时间 0.265 0.524 0.510 0.6342 不显著 初始浓度*投加量 1.730 0.524 3.300 0.0214* 高度显著 吸附时间*投加量 −0.220 0.524 −0.420 0.6918 不显著 初始浓度*初始浓度 −0.968 0.545 −1.780 0.1357 不显著 吸附时间*吸附时间 −0.243 0.545 −0.450 0.6739 不显著 投加量*投加量 0.162 0.545 0.300 0.7786 不显著 表 6 Box-Behnken实验设计及结果
Table 6. Box-Behnken experimental design and results
实验序号
Number吡啶浓度/(mg·L−1)
Concentration of pyridine生物炭投加量/(g·L−1)
Biochar mass吸附时间/h
Adsorption time吸附率/%
Adsorption rate1 150 6 3 96.12 2 150 5 2 97.14 3 150 4 3 97.54 4 100 6 4 94.67 5 50 5 2 93.49 6 100 6 2 95.29 7 50 4 3 97.82 8 100 5 3 95.87 9 50 5 4 92.00 10 150 5 4 96.71 11 100 5 3 95.69 12 100 4 2 96.82 13 100 4 4 97.08 14 100 5 3 96.58 15 50 6 3 89.48 -
[1] XUE L L, LIU J X, LI M D, et al. Enhanced treatment of coking wastewater containing phenol, pyridine, and quinoline by integration of an E-Fenton process into biological treatment [J]. Environmental Science and Pollution Research, 2017, 24(10): 9765-9775. doi: 10.1007/s11356-017-8644-y [2] 卓猛, 何成达, 刘伟慧. 利用反硝化法净化难降解吡啶废气 [J]. 环境工程学报, 2017, 11(12): 6345-6350. doi: 10.12030/j.cjee.201702127 ZHUO M, HE C D, LIU W H. Purification of refractory pyridine waste gas by anoxic denitrification [J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6345-6350(in Chinese). doi: 10.12030/j.cjee.201702127
[3] 晋婷婷, 任嘉红, 张晖, 等. 一株吡啶高效降解菌的鉴定及其降解特性 [J]. 生态环境学报, 2016, 25(7): 1217-1224. JIN T T, REN J H, ZHANG H, et al. Identification and characterization of A pyridine degrading bacterium [J]. Ecology and Environmental Sciences, 2016, 25(7): 1217-1224(in Chinese).
[4] YI X, ZHONG J. Biodegradation of pyridine and quinoline by two pseudomonas strains [J]. Acta Microbiologica Sinica, 2011, 51(8): 1087-1097. [5] 米伟. 低温放电条件下由苯直接生成吡啶和苯酚的研究[D]. 西安: 西安石油大学, 2019. MI W. Direct Synthesis of pyridine and phenol from benzene under low temperature discharge[D]. Xi'an: Xi'an Shiyou University, 2019(in Chinese).
[6] 陈佩, 颜家保, 余永登. 一株吡啶降解菌的筛选及其降解性能 [J]. 化工环保, 2015, 35(6): 566-570. doi: 10.3969/j.issn.1006-1878.2015.06.002 CHEN P, YAN J B, YU Y D. Screening of a Pyridine-degrading strain and its biodegradation capability [J]. Environmental Protection of Chemical Industry, 2015, 35(6): 566-570(in Chinese). doi: 10.3969/j.issn.1006-1878.2015.06.002
[7] QUAN J Z, LI Y C, SUN Q L, et al. Cometabolism degradation of pyridine with glucose in sequencing batch biofilm reactor(SBBR) [J]. Nature Environment& Pollution Technology, 2017, 16(2): 479-484. [8] 孙磊, 宋彤彤, 王佳硕, 等. 可降解吡啶的全食副球菌B21-3的筛选鉴定及降解特性 [J]. 微生物学通报, 2019, 46(3): 461-467. SUN L, SONG T T, WANG J S, et al. Screening, identification and characterization of a pyridine degrading bacterium Paracoccus pantotrophus B21-3 [J]. Microbiology China, 2019, 46(3): 461-467(in Chinese).
[9] 胡正夏. 含吡啶废水的强化电化学处理及其降解机理研究[D]. 北京: 中国地质大学, 2018. HU Z X. Electrochemical enhancement and degradation mechanism of pyridine contaminated wastewater[D]. Beijing: China University of Geosciences, 2018(in Chinese).
[10] 李婷, 刘曙, 蔡婧, 等. 双吡啶基功能化Cr(Ⅲ)印迹介孔二氧化硅材料的制备及其吸附性能研究 [J]. 分析化学, 2018, 46(11): 1836-1844. doi: 10.11895/j.issn.0253-3820.181341 LI T, LIU S, CAI J, et al. Preparation and adsorption properties of bipyridyl functionalized chromium(Ⅲ)imprinted mesoporous silica material [J]. Chinese Journal of Analytical Chemistry, 2018, 46(11): 1836-1844(in Chinese). doi: 10.11895/j.issn.0253-3820.181341
[11] 王菲, 孙红文. 生物炭对极性与非极性有机污染物的吸附机理 [J]. 环境化学, 2016, 35(6): 1134-1141. doi: 10.7524/j.issn.0254-6108.2016.06.2015122404 WANG F, SUN H W. Sorption mechanisms of polar and apolar organic contaminants onto biochars [J]. Environmental Chemistry, 2016, 35(6): 1134-1141(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015122404
[12] ELAIGWU S E, ROCHER V, KYRIAKOU G, et al. Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of prosopis africana shell [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3467-3473. doi: 10.1016/j.jiec.2013.12.036 [13] HU X, DING Z, ZIMMERMAN A R, et al. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis [J]. Water Research, 2015, 68(10): 206-216. [14] ALTMANN J, REHFELD D, TRÄDER K, et al. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal [J]. Water Research, 2016, 92: 131-139. doi: 10.1016/j.watres.2016.01.051 [15] HAN Y T, CAO X, OUYANG X, et al. Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (Ⅵ) from aqueous solution: effects of production conditions and particle size [J]. Chemosphere, 2016, 145: 336-341. doi: 10.1016/j.chemosphere.2015.11.050 [16] 秦振林, 张燕, 邱德跃, 等. 改性活性炭吸附处理农药嘧啶杂环废水的研究 [J]. 精细化工中间体, 2017, 47(3): 35-38. QIN Z L, ZHANG Y, QIU D Y, et al. Research on the treatment of pesticide wastewater containing heterocyclic compounds using modified activated carbon [J]. Fine Chemical Intermediates, 2017, 47(3): 35-38(in Chinese).
[17] 雷粮林, 邱德跃, 张燕, 等. 木质素/膨润土吸附处理甲基嘧啶磷废水的研究 [J]. 精细化工中间体, 2012, 21(1): 67-69. LIE L L, QIU D Y, ZHANG Y, et al. Research on adsorption treatment of wastewater of pirimiphos-methyl by lignin/bentonite [J]. Fine Chemical Intermediates, 2012, 21(1): 67-69(in Chinese).
[18] 张佳, 李伟英, 孙秀丽, 等. 粉末活性炭-超滤膜组合工艺去除水中磺胺二甲基嘧啶的研究 [J]. 水处理技术, 2012, 15(2): 59-64. doi: 10.3969/j.issn.1000-3770.2012.02.015 ZHANG J, LI W Y, SUN X L, et al. Research on removal of sulfamethazine by powdered activated carbon-ultrafiltration process [J]. Technology of Water Treatment, 2012, 15(2): 59-64(in Chinese). doi: 10.3969/j.issn.1000-3770.2012.02.015
[19] 徐生盼, 陈庆军, 梁晓怪. 三种活性炭对吲哚和吡啶的吸附性能 [J]. 水处理技术, 2009, 35(9): 19-21, 25. XU S P, CHEN Q J. Study on crystal morphology and recovery method of struvite [J]. Technology of Water Treatment, 2009, 35(9): 19-21, 25(in Chinese).
[20] 徐汉江. 芒果树皮生物炭的制备及其对吡啶与喹啉的吸附性能研究[D]. 广州: 华南理工大学, 2019. XU H J. Preparation of mango bark biochar and its adsorption properties for pyridine and quinoline[D]. Guangzhou: South China University of Technology, 2019(in Chinese).
[21] 俞蓉, 刘江江, 陈吕军, 等. 苯酚和吡啶在竹质活性炭上的吸附研究 [J]. 安全与环境学报, 2007, 7(5): 8-11. doi: 10.3969/j.issn.1009-6094.2007.05.003 YU R, LIU J J, CHEN L J, et al. Adsorption features of phenol and pyridine on the activated bamboo charcoal [J]. Journal of Safety and Environment, 2007, 7(5): 8-11(in Chinese). doi: 10.3969/j.issn.1009-6094.2007.05.003
[22] 金红玉, 张影, 王雅玲, 等. 加拿大一枝黄花防除化学药剂的筛选及其应用效能 [J]. 植物保护, 2018, 44(4): 194-201. JING H Y, ZHANG Y, WANG Y L, et al. Sereening of herbicides against Solidago canadensis L and its control effects on the weed [J]. Plant Protection, 2018, 44(4): 194-201(in Chinese).
[23] 古春凤, 叶小齐, 吴明, 等. 草甘膦对入侵植物加拿大一枝黄花和伴生植物白茅光合特性的影响 [J]. 生态学报, 2018, 38(8): 2743-2753. GU C F, YE X Q, WU M, et al. Effects of glyphosate on photosynthetic characteristics of an invasive plant Solidago canadensis and an indigenous plant Imperata cylindrica [J]. Acta Ecologica Sinica, 2018, 38(8): 2743-2753(in Chinese).
[24] 常晨, 程继亮, 强胜, 等. 加拿大一枝黄花茎秆木质素含量和木质素化程度的测定方法 [J]. 植物生理学报, 2018, 54(5): 917-924. CHANG C, CHENG J L, QIANG S, et al. Methods for determination of stem lignin content and lignification of Solidago canadensis [J]. Plant Physiology Journal, 2018, 54(5): 917-924(in Chinese).
[25] 罗来盛, 孙利红, 余阳, 等. 微波活化法制备加拿大一枝黄花活性炭及其性能表征 [J]. 环境工程学报, 2011, 5(5): 1161-1165. LUO L S, SUN L H, YU Y, et al. Preparation and characterization of activated carbon from Solidago canadensis by means of microwave irradiation activation [J]. Chinese Journal of Environmental Engineering, 2011, 5(5): 1161-1165(in Chinese).
[26] 梁桓, 索全义, 侯建伟, 等. 不同炭化温度下玉米秸秆和沙蒿生物炭的结构特征及化学特性 [J]. 土壤, 2015, 47(5): 886-891. LIANG H, SUO Q Y, HOU J W, et al. The Structure characteristics and chemical properties of maize straw biochar and artemisia ordosica biochar prepared at different carbonization temperatures [J]. Soils, 2015, 47(5): 886-891(in Chinese).
[27] 郑庆福, 王志民, 陈保国, 等. 制备生物炭的结构特征及炭化机理的XRD光谱分析 [J]. 光谱学与光谱分析, 2016, 36(10): 3355-3359. ZHENG Q F, WANG Z M, CHEN B G, et al. Analysis of XRD spectral structure and carbonization of the biochar preparation [J]. Spectroscopy and Spectral Analysis, 2016, 36(10): 3355-3359(in Chinese).
[28] 姜媛. 不同生物质制备的高温生物炭对水中芳香性有机污染物的吸附机制及规律[D]. 杭州: 浙江大学, 2017. JIANG Y. Adsorption mechnisms of aromatic come on biochars produced from various biomass at 700 ℃[D]. Hangzhou: Zhejiang University, 2017(in Chinese).
[29] 徐汉江. 芒果树皮生物炭的制备及其对吡啶和喹啉的吸附性能研究[D]. 广州: 华南理工大学, 2017: 5-6. XU H J. Preparation of mango bark biochar and its adsorption properties for pyridine and quinoline[D]. Guangzhou: South China University of Technology, 2017: 5-6(in Chinese).
[30] 林珈羽, 童仕唐. 生物炭的制备及其性能研究 [J]. 环境科学与技术, 2015, 38(12): 54-58. LIN J Y, TONG S T. Preparation and properties of biochar [J]. Environmental Science & Technology, 2015, 38(12): 54-58(in Chinese).