-
电镀是当代工业产业链中不可或缺的环节,在机械、电子、航天等各个领域都有广泛的应用,而电镀行业产生的电镀废水经过处理后会产生含有重金属离子及有毒有害成分的电镀污泥[1]。一般情况下,电镀污泥只是进行简单填埋,甚至随意堆放,不仅对环境造成污染,也是对资源的一种浪费[2]。因此,开发一种经济有效的处理电镀污泥的方法是环境工程领域亟待解决的问题。将电镀污泥作为原材料制作烧结砖是一种潜在的重要处理方法,因为它既可以减少自然资源的消耗,又可以降低废弃物的处理成本。高温制备砖体时,电镀污泥中的重金属会与土中的硅、铝、铁等氧化物相互反应发生矿化作用,这在很大程度上降低了重金属从砖体内部转移到环境中的可能性,减少了对周围环境的污染[3]。然而掺加电镀污泥等固废可能会降低烧结砖的性能,例如李鹏飞[4]将电镀污泥作为材料制作陶粒时发现,随着电镀污泥的添加,陶粒的抗压强度下降,吸水性提高。这是由于电镀污泥中含有的水分及有机物在高温燃烧时挥发排出到材料外部,生成连通气孔,导致材料内部疏松,力学性能下降。作者在之前的研究中已发现,砖体内部的致密性与高温时产生液相的量密切相关,因此提高液相产生量是提高砖体力学性能及降低浸出风险的一种潜在方法[5]。玻璃在高温时能形成熔融液相,且黏度较大,使砖体内部各物质结合紧密,起到提高内部致密度的作用,同时其中的Na2O及非结晶成分能起到助熔剂的作用,在高温煅烧时使石英在较低的温度熔融从而进一步提高砖体内部液相产生量提高砖体的抗压等物理性能[6]。
通过添加玻璃粉对砖体性能进行改善是潜在的一种方法[7],但很少有研究关注玻璃粉粒径的变化对砖体性能的改善作用,本研究采用4种目数的玻璃粉,考察其对烧结砖物理和力学性能的影响,以及对重金属固定的作用。
添加玻璃粉对掺混电镀污泥砖物理力学性能及浸出毒性的影响
Effects of glass powder on physical and mechanical properties and leaching toxicity of brick incorporating electroplating sludge
-
摘要: 本文考察加入玻璃粉对掺有电镀污泥烧结砖物理力学性能及重金属浸出效果的提升效果。按照10%、20%、30%的质量比分别加入100目、300目、600目、800目的玻璃粉,烧成温度为950 ℃,测试了污泥砖的烧失量、显气孔率、吸水率、体积密度及抗压强度,并考察了掺加不同粒径玻璃粉对重金属浸出毒性的影响。研究表明,当掺加30%质量分数的300目玻璃粉时,砖体的各项性能最好,线性收缩率−7.55%、显气孔率10.07%、吸水率7.72%、体积密度2.01 g·cm−3;比表面积和平均孔径达到0.46 m2·g−1和3060 nm。对砖体进行39 d的浸出毒性试验,浸出液中Cu2+、Zn2+、总Cr、Ni2+的最大浓度分别为0.44、0.93、0.14、0.19 mg·L−1,远低于国家标准。研究还表明,除了熔融玻璃相与烧结砖的粘结外,砖体内部生成的尖晶石结构也对Cu、Zn、Ni、Cr的固定化起到重要作用。Abstract: The purpose of this study is to examine the improvement in the physical-mechanical properties of fired bricks containing electroplating sludge and the leaching performance of heavy metals. Three mass fractions (10%, 20% and 30%) of waste glass powder with different particle sizes (100, 300, 600 and 800 meshes) were introduced in the production of the bricks, and these bricks were fired at 950 ℃. Mass loss of ignition, apparent porosity, water absorption, bulk density and compressive strength of fired bricks containing electroplating sludge were tested, and the influences of particle size of glass powder on the leaching toxicity of heavy metal were also evaluated. The results showed that the physical-mechanical properties of the bricks were relatively better when 30% of glass powder with particle size of 300 meshes was added. Physical properties, including linear shrinkage, apparent porosity, water absorption and bulk density, were −7.55%, 10.07%, 7.72% and 2.01 g·cm−3 respectively at this condition. Meanwhile, specific surface area and average pore diameter of fired bricks were 0.46 m2·g−1 and 3060 nm. The maximum concentrations of Cu2+, Zn2+, total Cr and Ni2+ in the leaching solution were 0.44, 0.93, 0.14 and 0.19 mg·L−1 when the leaching time was prolonged to 39 days. These concentrations of heavy metals in leaching solutions were far lower than that required in the national standard. The bonding between the molten glass and bricks played an important role in reducing the leachabilities of heavy metals. Additionally, the formation of spinel at high temperature also was an important factor for improving the immobilization of Cu, Zn, Ni and Cr.
-
Key words:
- Electroplating sludge /
- heavy metals /
- leaching risk /
- glass powder
-
表 1 样品原料配比
Table 1. Table of sample raw material ratio
样品标号
Sample label电镀污泥添加量/%
Adding amount of
electroplating sludge玻璃粉添加量/%
Adding amount of
glass powder红土添加量/%
Adding amount of
red clay玻璃粉目数/mesh
Glass powder
mesh1 20 10 70 100 2 20 20 60 100 3 20 30 50 100 4 20 10 70 300 5 20 20 60 300 6 20 30 50 300 7 20 10 70 600 8 20 20 60 600 9 20 30 50 600 10 20 10 70 800 11 20 20 60 800 12 20 30 50 800 表 2 原料化学成分表
Table 2. chemical compositions of raw materials
元素种类
Element species电镀污泥/%
Electroplating sludge玻璃粉/%
Glass powder红土/%
Red claySi 0.84 46.85 50.03 Al 0.209 1.13 16.48 Fe 44.14 0.288 16.79 K 0.185 0.163 6.326 Ca 3.65 9.58 5.295 Mg 0.324 2.04 1.87 Ti 0.018 0.04 1.59 Na 3.15 7.96 0.644 Mn 0.198 0.003 0.272 P 1.93 未检测出 0.081 S 0.555 未检测出 0.021 Cr 14.12 0.004 未检测出 Zn 25.94 未检测出 0.046 Ni 1.673 0.018 0.0281 Cu 1.388 未检测出 0.0223 表 3 不同粒径玻璃粉烧结砖比表面积(m2 ·g−1)
Table 3. Specific surface area of sintered brick with different particle sizes of glass powder
目数
mesh10%添加量比表面积
Specific surface area with 10%
of waste glass20%添加量比表面积
Specific surface area with 20%
of waste glass30%添加量比表面积
Specific surface area with 30%
of waste glass100 1.51 1.6 1.41 300 1.11 0.86 0.46 600 1.53 1.47 1.44 800 1.47 1.42 1.4 表 4 不同粒径玻璃粉烧结砖平均孔径(nm)
Table 4. Average pore diameter of fired brick with different particle size of glass powder
目数
mesh10%添加量平均孔径
Average pore diameter with 10%
of waste glass20%添加量平均孔径
Average pore diameter with 20%
of waste glass30%添加量平均孔径
Average pore diameter with 30%
of waste glass100 5380 4674 4062 300 3959 3212 3060 600 4499 4215 3952 800 4076 3643 3594 -
[1] 姚虹. 电镀污泥处置及资源化方法探究 [J]. 中国资源综合利用, 2019, 37(10): 78-80. doi: 10.3969/j.issn.1008-9500.2019.10.024 YAO H. Study on the treatment and resource utilization of electroplating sludge [J]. Comprehensive Utilization of Resources in China, 2019, 37(10): 78-80(in Chinese). doi: 10.3969/j.issn.1008-9500.2019.10.024
[2] AKBAL F, CAMCI S. Comparison of electrocoagulation and chemical coagulation for heavy metal removal [J]. Chemical Engineering & Technology, 2010, 33(10): 1655-1664. [3] LI M, SU P, GUO Y, et al. Effects of SiO2, Al2O3, and Fe2O3, on leachability of Zn, Cu and Cr in ceramics incorporated with electroplating sludge [J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3143-3150. doi: 10.1016/j.jece.2017.06.019 [4] 李鹏飞. 利用电镀污泥制备陶粒的研究[D]. 杭州: 浙江大学, 2018. LI P F. Study on the preparation of ceramsite by electroplating sludge[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
[5] MAO L, WU Y Q, ZHANG W Y, et al. The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing [J]. Journal of Environmental Management, 2019, 231: 780-787. [6] CHIDIAC S E, FEDERICO L M. Effects of waste glass additions on the properties and durability of fired clay brick [J]. Canadian Journal of Civil Engineering, 2007, 34(11): 1458-1466. doi: 10.1139/L07-120 [7] PHONPHUAK N, KANYAKAM S, CHINDAPRASIRT P. Utilization of waste glass to enhance physical–mechanical properties of fired clay brick [J]. Journal of Cleaner Production, 2016, 112: 3057-3062. doi: 10.1016/j.jclepro.2015.10.084 [8] DAI Z Q, WU Y Q, HU L C, et a. Evaluating physical-mechanical properties and long periods environmental risk of fired clay bricks incorporated with electroplating sludge [J]. Construction and Building Materials, 2019, 227: 264-280. [9] 中华人民共和国国家质量监督检验检疫总局. GB5101—2003, 烧结普通砖[S]. 北京: 中国标准出版社, 2004. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB5101—2003, sintered common brick[S]. Beijing: China Standards Press, 2004(in Chinese).
[10] 中华人民共和国国家质量监督检验检疫总局. GB/T 2542—2012, 砌墙砖试验方法[S]. 北京: 中国标准出版社, 2013. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 2542—2012, test methods for bricklaying[S]. Beijing: China Standards Press, 2013(in Chinese).
[11] 国家环境保护总局. HJ/T300—2007, 固体废物浸出毒性浸出方法 醋酸缓冲溶液法[S]. 北京: 中国标准出版社, 2007. State Environmental Protection Administration. HJ/T300—2007, toxic leaching method of solid waste, acetic acid buffer solution method[S]. Beijing: China Standards Press, 2007(in Chinese).
[12] 周阳, 张萍, 杨为中, 等. 钒钛废渣中Fe2O3对陶瓷砖性能影响 [J]. 四川有色金属, 2017(2): 47-50. doi: 10.3969/j.issn.1006-4079.2017.02.018 ZHOU Y, ZHANG P, YANG W Z, et al. Effect of Fe2O3 in vanadium titanium slag on the properties of ceramic tiles [J]. Sichuan Nonferrous Metals, 2017(2): 47-50(in Chinese). doi: 10.3969/j.issn.1006-4079.2017.02.018
[13] 宣雷. 尖晶石结构铁酸盐矿物的制备和表征[D]. 济南: 济南大学, 2011. XUAN L. Preparation and characterization of spinel ferrite minerals[D]. Jinan: Jinan University, 2011(in Chinese).
[14] 杜艳霞. 利用白泥制备蒸压砖的研究 [J]. 新型建筑材料, 2019, 46(7): 72-74. doi: 10.3969/j.issn.1001-702X.2019.07.018 DU Y X. Study on the preparation of autoclaved brick with white mud [J]. New Building Materials, 2019, 46(7): 72-74(in Chinese). doi: 10.3969/j.issn.1001-702X.2019.07.018
[15] SINYOUNG S, SONGSIRIRITTHIGUL P, ASAVAPISIT S, et al. Chromium behavior during cement-production processes: A clinkerization, hydration, and leaching study [J]. Journal of Hazardous Materials, 2011, 191(1-3): 296-305. doi: 10.1016/j.jhazmat.2011.04.077 [16] 周全会. 以烧失量鉴定混凝土受火温度的分析研究[D]. 重庆: 重庆大学, 2005. ZHOU Q H. Analysis and research on the evaluation of concrete fire temperature by loss on ignition[D]. Chongqing: Chongqing University, 2005(in Chinese).
[17] 宋杰光, 吴伯麟. 高性能石英砂烧结砖体积收缩的影响因素研究 [J]. 砖瓦, 2004(12): 5-7. doi: 10.3969/j.issn.1001-6945.2004.12.001 SONG J G, WU B L. Study on influencing factors of volume shrinkage of high performance quartz sand sintered brick [J]. Brick and Tile, 2004(12): 5-7(in Chinese). doi: 10.3969/j.issn.1001-6945.2004.12.001
[18] LU D W, QI Y F, YUE Q Y, et al. Properties and mechanism of red mud in preparation of, ultra lightweight sludge red mud ceramics [J]. Journal of Central South University: English Edition, 2012, 19(1): 231-237. doi: 10.1007/s11771-012-0996-3 [19] 韩丹丹, 张健需, 同帜, 等. 粉体颗粒粒径对黄土基陶瓷支撑体性能的影响 [J]. 陶瓷学报, 2019(5): 660-664. HAN D D, ZHANG J X, TONG Q, et al. The influence of particle size of powder on the performance of loess based ceramic support [J]. Journal of Ceramics, 2019(5): 660-664(in Chinese).
[20] 陈倩. 利用煤渣制备陶瓷釉面砖的研究[D]. 广州: 华南理工大学, 2012. CHEN Q. Study on the preparation of ceramic glazed tiles from coal cinders[D]. Guangzhou: South China University of Technology, 2012(in Chinese).
[21] 丁贯保, 漆虹, 邢卫红. 粒径分布对氧化铝多孔支撑体孔结构的影响 [J]. 膜科学与技术, 2008, 28(5): 23-27. doi: 10.3969/j.issn.1007-8924.2008.05.004 DING G B, QI H, XING W H. Effect of particle size distribution on pore structure of alumina porous support [J]. Membrane Science and Technology, 2008, 28(5): 23-27(in Chinese). doi: 10.3969/j.issn.1007-8924.2008.05.004
[22] PÉREZ-VILLAREJO L, MARTÍNEZ-MARTÍNEZ, S, CARRASCO-HURTADO B, et al. Valorization and inertization of galvanic sludge waste in clay bricks [J]. Appl Clay Sci, 2015, 105: 89-99. [23] 王振涛, 王刚, 王微, 等. 粉体粒径及烧结工艺对ZrB2陶瓷致密化行为与晶粒长大的影响 [J]. 人工晶体学报, 2019, 48(8): 1516-1521. doi: 10.3969/j.issn.1000-985X.2019.08.023 WANG Z T, WANG G, WANG W, et al. Effect of powder size and sintering process on densification behavior and grain growth of ZrB2 ceramics [J]. Journal of Artificial Crystals, 2019, 48(8): 1516-1521(in Chinese). doi: 10.3969/j.issn.1000-985X.2019.08.023
[24] LEE D Y, KIM D J, KIM B Y, et al. Effect of alumina particle size and distribution on infiltration rate and fracture toughness of alumina- glass composites prepared by melt infiltration [J]. Mater Sci Eng A, 2003, 341(1-2): 98-105. doi: 10.1016/S0921-5093(02)00209-5 [25] 程贤春, 彭方针. 用孟加拉、印度原料制备高档墙地砖的研究 [J]. 佛山陶瓷, 2015, 25(06): 24-30-38. doi: 10.3969/j.issn.1006-8236.2015.06.007 CHENG X C, PENG F Z. Study on the preparation of high-grade wall and floor tiles from Bangladeshi and Indian raw materials [J]. Foshan Ceramics, 2015, 25(06): 24-30-38(in Chinese). doi: 10.3969/j.issn.1006-8236.2015.06.007
[26] 党晓娥, 刘安全, 吕军. 电镀污泥钠钙化焙烧过程金属的矿相转化及平衡分布 [J]. 环境工程学报, 2018, 12(10): 2944-2951. doi: 10.12030/j.cjee.201803085 DANG X E, LIU A Q, LV J. phase transformation and equilibrium distribution of metals in calcium roasting process of electroplating sludge [J]. Journal of Environmental Engineering, 2018, 12(10): 2944-2951(in Chinese). doi: 10.12030/j.cjee.201803085
[27] 国家环境保护总局. GB5085.3—2007, 危险废物鉴别标准浸出毒性鉴别[S]. 北京: 中国标准出版社, 2007. State Environmental Protection Administration. GB5085.3—2007, hazardous waste identification standard, leaching toxicity identification[S]. Beijing: China Standards Press, 2007(in Chinese).
[28] LUZ A P, RIBEIRO S. Use of glass waste as a raw material in porcelain stoneware tile mixtures [J]. Ceramics International, 2007, 33(5): 761-765. doi: 10.1016/j.ceramint.2006.01.001 [29] DONDI M, GUARINI G, RAIMONDO M, et al. Recycling PC and TV waste glass in clay bricks and roof tiles [J]. Waste Manage, 2009, 29: 1945-1951. doi: 10.1016/j.wasman.2008.12.003