全氟烷基羧酸前体物氟调醇的污染水平与生物转化研究进展

张宏娜, 温蓓, 张淑贞. 全氟烷基羧酸前体物氟调醇的污染水平与生物转化研究进展[J]. 环境化学, 2021, (1): 65-82. doi: 10.7524/j.issn.0254-6108.2020020101
引用本文: 张宏娜, 温蓓, 张淑贞. 全氟烷基羧酸前体物氟调醇的污染水平与生物转化研究进展[J]. 环境化学, 2021, (1): 65-82. doi: 10.7524/j.issn.0254-6108.2020020101
ZHANG Hongna, WEN Bei, ZHANG Shuzhen. Environmental occurrence and biotransformation of perfluoroalkyl carboxylic acid precursors: Fluorotelomer alcohols[J]. Environmental Chemistry, 2021, (1): 65-82. doi: 10.7524/j.issn.0254-6108.2020020101
Citation: ZHANG Hongna, WEN Bei, ZHANG Shuzhen. Environmental occurrence and biotransformation of perfluoroalkyl carboxylic acid precursors: Fluorotelomer alcohols[J]. Environmental Chemistry, 2021, (1): 65-82. doi: 10.7524/j.issn.0254-6108.2020020101

全氟烷基羧酸前体物氟调醇的污染水平与生物转化研究进展

    通讯作者: 温蓓, E-mail: bwen@rcees.ac.cn
  • 基金项目:

    国家自然科学基金(21537005,21806134,41671465)资助.

Environmental occurrence and biotransformation of perfluoroalkyl carboxylic acid precursors: Fluorotelomer alcohols

    Corresponding author: WEN Bei, bwen@rcees.ac.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21537005, 21806134, 41671465).
  • 摘要: 全氟烷基羧酸(perfluorocarboxylic acids,PFCAs)普遍具有环境持久性、生物富集性及生物毒性效应.随着政府和国际组织对PFCAs生产和排放的监控和管制,探究PFCAs的间接来源变得愈加迫切.氟调醇(fluorotelomer alcohols,FTOHs)是生产含氟聚合物和含氟表面活性剂的重要原材料,被广泛应用于消费品与工业产品的生产.此外,FTOHs也是多种氟调类产品降解转化过程的主要中间体.FTOHs的降解已被普遍认为是环境和生物体中PFCAs重要的间接来源.FTOHs进入环境后可进行长距离迁移,并且能够在环境介质和生物体内不断转化,生成一系列多氟类中间物质,最终转化生成不同链长的PFCAs.近期研究发现,FTOHs的多氟类中间代谢物表现出比PFCAs更强的生物毒性效应.因此,只有全面了解FTOHs的污染水平与生物转化过程,才能正确评估FTOHs暴露的环境和健康风险.本文全面介绍了FTOHs的理化性质与环境中的来源,概述了FTOHs的分析方法和环境污染状况,分析了FTOHs在不同生物介质中的转化过程,并解析了FTOHs的致毒机制.
  • 加载中
  • [1] PREVEDOUROS K, COUSINS I T, BUCK R C, et al. Sources, fate and transport of perfluorocarboxylates[J]. Environmental Science & Technology, 2006, 40(1):32-44.
    [2] LINDSTROM A B, STRYNAR M J, LIBELO E L. Polyfluorinated compounds:Past, present, and future[J]. Environmental Science & Technology, 2011, 45(19):7954-7961.
    [3] KRAFFT M P, RIESS J G. Per- and polyfluorinated substances (PFASs):Environmental challenges[J]. Current Opinion in Colloid & Interface Science, 2015, 20(3):192-212.
    [4] BENBRAHIM-TALLAA L, LAUBY-SECRETAN B, LOOMIS D, et al. Carcinogenicity of perfluorooctanoic acid, tetrafluoroethylene, dichloromethane, 1,2-dichloropropane, and 1,3-propane sultone[J]. Lancet Oncology, 2014, 15(9):924-925.
    [5] UNEP. Listing of perfluorooctanoic acid (PFOA), its salts and PFOA-related compounds; UNEP/POP/COP.9/SC-9/12[EB/OL].[2019-12-16]. http://chm.pops.int/TheConvention/ConferenceoftheParties/Meetings/COP9/tabid/7521/Default.aspx.
    [6] FROMEL T, KNEPPER T P. Biodegradation of fluorinated alkyl substances[J]. Reviews of Environmental Contamination and Toxicology, 2010, 208:161-177.
    [7] NILSSON H, KARRMAN A, ROTANDER A, et al. Biotransformation of fluorotelomer compound to perfluorocarboxylates in humans[J]. Environment International, 2013, 51:8-12.
    [8] YUAN G, PENG H, HUANG C, et al. Ubiquitous occurrence of fluorotelomer alcohols in eco-friendly paper-made food-contact materials and their implication for human exposure[J]. Environmental Science & Technology, 2016, 50(2):942-950.
    [9] D'EON J C, MABURY S A. Is indirect exposure a significant contributor to the burden of perfluorinated acids observed in humans?[J]. Environmental Science & Technology, 2011, 45(19):7974-7984.
    [10] YOUNG C J, FURDUI V I, FRANKLIN J, et al. Perfluorinated acids in Arctic snow:New evidence for atmospheric formation[J]. Environmental Science & Technology, 2007, 41(10):3455-3461.
    [11] SHOEIB M, HARNER T, VLAHOS P. Perfluorinated chemicals in the Arctic atmosphere[J]. Environmental Science & Technology, 2006, 40(24):7577-7583.
    [12] DE SILVA A O, MABURY S A. Isolating isomers of perfluorocarboxylates in polar bears (Ursus maritimus) from two geographical locations[J]. Environmental Science & Technology, 2004, 38(24):6538-6545.
    [13] WANG X, HALSALL C, CODLING G, et al. Accumulation of perfluoroalkyl compounds in Tibetan Mountain snow:Temporal patterns from 1980 to 2010[J]. Environmental Science & Technology, 2014, 48(1):173-181.
    [14] BENSKIN J P, PHILLIPS V, ST. LOUIS V L, et al. Source elucidation of perfluorinated carboxylic acids in remote alpine lake sediment cores[J]. Environmental Science & Technology, 2011, 45(17):7188-7194.
    [15] WANG N, SZOSTEK B, BUCK R C, et al. Fluorotelomer alcohol biodegradation-Direct evidence that perfluorinated carbon chains breakdown[J]. Environmental Science & Technology, 2005, 39(19):7516-7528.
    [16] LIU J, LEE L S, NIES L F, et al. Biotransformation of 8:2 fluorotelomer alcohol in soil and by soil bacteria isolates[J]. Environmental Science & Technology, 2007, 41(23):8024-8030.
    [17] CARMOSINI N, LEE L S. Partitioning of fluorotelomer alcohols to octanol and different sources of dissolved organic carbon[J]. Environmental Science & Technology, 2008, 42(17):6559-6565.
    [18] DINGLASAN-PANLILIO M J A, MABURY S A. Significant residual fluorinated alcohols present in various fluorinated materials[J]. Environmental Science & Technology, 2006, 40(5):1447-1453.
    [19] LIU J, LEE L S. Effect of fluorotelomer alcohol chain length on aqueous solubility and sorption by soils[J]. Environmental Science & Technology, 2007, 41(15):5357-5362.
    [20] LIU J, LEE L S. Solubility and sorption by soils of 8:2 fluorotelomer alcohol in water and cosolvent systems[J]. Environmental Science & Technology, 2005, 39(19):7535-7540.
    [21] STOCK N L, ELLIS D A, DELEEBEECK L, et al. Vapor pressures of the fluorinated telomer alcohols-Limitations of estimation methods[J]. Environmental Science & Technology, 2004, 38(6):1693-1699.
    [22] ARP H P H, NIEDERER C, GOSS K U. Predicting the partitioning behavior of various highly fluorinated compounds[J]. Environmental Science & Technology, 2006, 40(23):7298-7304.
    [23] OECD. Preliminary lists of PFOS, PFAS, PFOA and related compounds and chemicals that may degrade to PFCA[J]. OECD Papers, 2006, 6(11):158-351.
    [24] D'EON J C, CROZIER P W, FURDUI V I, et al. Observation of a commercial fluorinated material, the polyfluoroalkyl phosphoric acid diesters, in human sera, wastewater treatment plant sludge, and paper fibers[J]. Environmental Science & Technology, 2009, 43(12):4589-4594.
    [25] LEE H, D'EON J, MABURY S A. Biodegradation of polyfluoroalkyl phosphates as a source of perfluorinated acids to the environment[J]. Environmental Science & Technology, 2010, 44(9):3305-3310.
    [26] CHEN M, GUO T, HE K, et al. Biotransformation and bioconcentration of 6:2 and 8:2 polyfluoroalkyl phosphate diesters in common carp (Cyprinus carpio):Underestimated ecological risks[J]. Science of the Total Environment, 2019, 656:201-208.
    [27] DASU K, LIU J, LEE L S. Aerobic soil biodegradation of 8:2 fluorotelomer stearate monoester[J]. Environmental Science & Technology, 2012, 46(7):3831-3836.
    [28] BUTT C M, MUIR D C, MABURY S A. Biotransformation of the 8:2 fluorotelomer acrylate in rainbow trout. 1. In vivo dietary exposure[J]. Environmental Toxicology and Chemistry, 2010, 29(12):2726-2735.
    [29] BUTT C M, YOUNG C J, MABURY S A, et al. Atmospheric chemistry of 4:2 fluorotelomer acrylate C4F9CH2CH2OC(O)CH=CH2:Kinetics, mechanisms, and products of chlorine-atom- and OH-radical-initiated oxidation[J]. Journal of Physical Chemistry A, 2009, 113(13):3155-3161.
    [30] WANG N, LIU J, BUCK R C, et al. 6:2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants[J]. Chemosphere, 2011, 82(6):853-858.
    [31] SHAW D M J, MUNOZ G, BOTTOS E M, et al. Degradation and defluorination of 6:2 fluorotelomer sulfonamidoalkyl betaine and 6:2 fluorotelomer sulfonate by Gordonia sp. strain NB4-1Y under sulfur-limiting conditions[J]. Science of the Total Environment, 2019, 647:690-698.
    [32] RUAN T, SZOSTEK B, FOLSOM P W, et al. Aerobic soil biotransformation of 6:2 fluorotelomer iodide[J]. Environmental Science & Technology, 2013, 47(20):11504-11511.
    [33] RUAN T, WANG Y W, WANG T, et al. Presence and partitioning behavior of polyfluorinated iodine alkanes in environmental matrices around a fluorochemical manufacturing plant:Another possible source for perfluorinated carboxylic acids?[J]. Environmental Science & Technology, 2010, 44(15):5755-5761.
    [34] RANKIN K, LEE H, TSENG P J, et al. Investigating the biodegradability of a fluorotelomer-based acrylate polymer in a soil-plant microcosm by indirect and direct analysis[J]. Environmental Science & Technology, 2014, 48(21):12783-12790.
    [35] RUSSELL M H, BERTI W R, SZOSTEK B, et al. Investigation of the biodegradation potential of a fluoroacrylate polymer product in aerobic soils[J]. Environmental Science & Technology, 2008, 42(3):800-807.
    [36] LI L, LIU J, HU J, et al. Degradation of fluorotelomer-based polymers contributes to the global occurrence of fluorotelomer alcohol and perfluoroalkyl carboxylates:A combined dynamic substance flow and environmental fate modeling analysis[J]. Environmental Science & Technology, 2017, 51(8):4461-4470.
    [37] SZOSTEK B, PRICKETT K B. Determination of 8:2 fluorotelomer alcohol in animal plasma and tissues by gas chromatography-mass spectrometry[J]. Journal of Chromatography B, 2004, 813(1/2):313-321.
    [38] MARTIN J W, MUIR D C G, MOODY C A, et al. Collection of airborne fluorinated organics and analysis by gas chromatography/chemical ionization mass spectrometry[J]. Analytical Chemistry, 2002, 74(3):584-590.
    [39] ELLINGTON J J, WASHINGTON J W, EVANS J J, et al. Analysis of fluorotelomer alcohols in soils:Optimization of extraction and chromatography[J]. Journal of Chromatography A, 2009, 1216(28):5347-5354.
    [40] YOO H, WASHINGTON J W, ELLINGTON J J, et al. Concentrations, distribution, and persistence of fluorotelomer alcohols in sludge-applied soils near Decatur, Alabama, USA[J]. Environmental Science & Technology, 2010, 44(22):8397-8402.
    [41] YOO H, WASHINGTON J W, JENKINS T M, et al. Quantitative determination of perfluorochemicals and fluorotelomer alcohols in plants from biosolid-amended fields using LC/MS/MS and GC/MS[J]. Environmental Science & Technology, 2011, 45(19):7985-7990.
    [42] RIEDEL T P, LANG J R, STRYNAR M J, et al. Gas-phase detection of fluorotelomer alcohols and other oxygenated per- and polyfluoroalkyl substances by chemical ionization mass spectrometry[J]. Environmental Science & Technology Letters, 2019, 6(5):289-293.
    [43] SZOSTEK B, PRICKETT K B, BUCK R C. Determination of fluorotelomer alcohols by liquid chromatography/tandem mass spectrometry in water[J]. Rapid Communications in Mass Spectrometry, 2006, 20(19):2837-2844.
    [44] ZHANG S, SZOSTEK B, MCCAUSLAND P K, et al. 6:2 and 8:2 Fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions[J]. Environmental Science & Technology, 2013, 47(9):4227-4235.
    [45] ZHAO L, FOLSOM P W, WOLSTENHOLME B W, et al. 6:2 Fluorotelomer alcohol biotransformation in an aerobic river sediment system[J]. Chemosphere, 2013, 90(2):203-209.
    [46] NABB D L, SZOSTEK B, HIMMELSTEIN M W, et al. In vitro metabolism of 8-2 fluorotelomer alcohol:Interspecies comparisons and metabolic pathway refinement[J]. Toxicological Sciences, 2007, 100(2):333-344.
    [47] BERGER U, LANGLOIS I, OEHME M, et al. Comparison of three types of mass spectrometer for high-performance liquid chromatography/mass spectrometry analysis of perfluoroalkylated substances and fluorotelomer alcohols[J]. European Journal of Mass Spectrometry, 2004, 10(5):579-588.
    [48] ZHANG H, WEN B, HU X, et al. Determination of fluorotelomer alcohols and their degradation products in biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2015, 1404:72-80.
    [49] PENG H, HU K, ZHAO F, et al. Derivatization method for sensitive determination of fluorotelomer alcohols in sediment by liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1288:48-53.
    [50] WONG F, SHOEIB M, KATSOYIANNIS A, et al. Assessing temporal trends and source regions of per- and polyfluoroalkyl substances (PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP)[J]. Atmospheric Environment, 2018, 172:65-73.
    [51] JAHNKE A, BERGER U, EBINGHAUS R, et al. Latitudinal gradient of airborne polyfluorinated alkyl substances in the marine atmosphere between Germany and South Africa (53°N-33°S)[J]. Environmental Science & Technology, 2007, 41(9):3055-3061.
    [52] LI J, DEL VENTO S, SCHUSTER J, et al. Perfluorinated compounds in the Asian atmosphere[J]. Environmental Science & Technology, 2011, 45(17):7241-7248.
    [53] AHRENS L, SHOEIB M, HARNER T, et al. Wastewater treatment plant and landfills as sources of polyfluoroalkyl compounds to the atmosphere[J]. Environmental Science & Technology, 2011, 45(19):8098-8105.
    [54] TIAN Y, YAO Y, CHANG S, et al. Occurrence and phase distribution of neutral and ionizable per- and polyfluoroalkyl substances (PFASs) in the atmosphere and plant leaves around landfills:A case study in Tianjin, China[J]. Environmental Science & Technology, 2018, 52(3):1301-1310.
    [55] KIM S K, SHOEIB M, KIM K S, et al. Indoor and outdoor poly- and perfluoroalkyl substances (PFASs) in Korea determined by passive air sampler[J]. Environmental Pollution, 2012, 162:144-150.
    [56] SHOEIB M, HARNER T, WEBSTER G M, et al. Indoor sources of poly- and perfluorinated compounds (PFCS) in Vancouver, Canada:Implications for human exposure[J]. Environmental Science & Technology, 2011, 45(19):7999-8005.
    [57] NILSSON H, KARRMAN A, ROTANDER A, et al. Inhalation exposure to fluorotelomer alcohols yield perfluorocarboxylates in human blood?[J]. Environmental Science & Technology, 2010, 44(19):7717-7722.
    [58] STRYNAR M J, LINDSTROM A B. Perfluorinated compounds in house dust from Ohio and North Carolina, USA[J]. Environmental Science & Technology, 2008, 42(10):3751-3756.
    [59] XIE Z, ZHAO Z, MOLLER A, et al. Neutral poly- and perfluoroalkyl substances in air and seawater of the North Sea[J]. Environmental Science and Pollution Research, 2013, 20(11):7988-8000.
    [60] MAHMOUD M A M, KÄRRMAN A, OONO S, et al. Polyfluorinated telomers in precipitation and surface water in an urban area of Japan[J]. Chemosphere, 2009, 74(3):467-472.
    [61] BACH C, BOITEUX V, HEMARD J, et al. Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction-gas chromatography/mass spectrometry[J]. Journal of Chromatography A, 2016, 1448:98-106.
    [62] TANIYASU S, KANNAN K, SO M K, et al. Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota[J]. Journal of Chromatography A, 2005, 1093(1/2):89-97.
    [63] SINCLAIR E, KANNAN K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants[J]. Environmental Science & Technology, 2006, 40(5):1408-1414.
    [64] ZHANG T, SUN H, GERECKE A C, et al. Comparison of two extraction methods for the analysis of per- and polyfluorinated chemicals in digested sewage sludge[J]. Journal of Chromatography A, 2010, 1217(31):5026-5034.
    [65] CHEN H, PENG H, YANG M, et al. Detection, occurrence, and fate of fluorotelomer alcohols in municipal wastewater treatment plants[J]. Environmental Science & Technology, 2017, 51(16):8953-8961.
    [66] WASHINGTON J W, YOO H, ELLINGTON J J, et al. Concentrations, distribution, and persistence of perfluoroalkylates in sludge-applied soils near Decatur, Alabama, USA[J]. Environmental Science & Technology, 2010, 44(22):8390-8396.
    [67] XU Z, LI L, HENKELMANN B, et al. Occurrence of fluorotelomer alcohols at two Alpine summits:Sources, transport and temporal trends[J]. Environmental Chemistry, 2017, 14(4):215-223.
    [68] XIE Z, WANG Z, MI W, et al. Neutral poly-/perfluoroalkyl substances in air and snow from the Arctic[J]. Scientific Reports, 2015, 5(1):8912.
    [69] BOSSI R, VORKAMP K, SKOV H. Concentrations of organochlorine pesticides, polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland[J]. Environmental Pollution, 2016, 217:4-10.
    [70] YAO Y, CHANG S, SUN H, et al. Neutral and ionic per- and polyfluoroalkyl substances (PFASs) in atmospheric and dry deposition samples over a source region (Tianjin, China)[J]. Environmental Pollution, 2016, 212:449-456.
    [71] HEYDEBRECK F, TANG J, XIE Z, et al. Emissions of per- and polyfluoroalkyl substances in a textile manufacturing plant in China and their relevance for workers' exposure[J]. Environmental Science & Technology, 2016, 50(19):10386-10396.
    [72] SCHLUMMER M, GRUBER L, FIEDLER D, et al. Detection of fluorotelomer alcohols in indoor environments and their relevance for human exposure[J]. Environment International, 2013, 57/58:42-49.
    [73] LIU W, TAKAHASHI S, SAKURAMACHI Y, et al. Polyfluorinated telomers in indoor air of Japanese houses[J]. Chemosphere, 2013, 90(5):1672-1677.
    [74] HAUG L S, HUBER S, SCHLABACH M, et al. Investigation on per- and polyfluorinated compounds in paired samples of house dust and indoor air from Norwegian homes[J]. Environmental Science & Technology, 2011, 45(19):7991-7998.
    [75] PADILLA-SÁNCHEZ J A, PAPADOPOULOU E, POOTHONG S, et al. Investigation of the best approach for assessing human exposure to poly- and perfluoroalkyl substances through indoor air[J]. Environmental Science & Technology, 2017, 51(21):12836-12843.
    [76] SHA B, DAHLBERG A-K, WIBERG K, et al. Fluorotelomer alcohols (FTOHs), brominated flame retardants (BFRs), organophosphorus flame retardants (OPFRs) and cyclic volatile methylsiloxanes (cVMSs) in indoor air from occupational and home environments[J]. Environmental Pollution, 2018, 241:319-330.
    [77] FRASER A J, WEBSTER T F, WATKINS D J, et al. Polyfluorinated compounds in serum linked to indoor air in office environments[J]. Environmental Science & Technology, 2012, 46(2):1209-1215.
    [78] ZHENG G, BOOR B E, SCHREDER E, et al. Indoor exposure to per- and polyfluoroalkyl substances (PFAS) in the childcare environment[J]. Environmental Pollution, 2020, 258:113714.
    [79] YAO Y, ZHAO Y, SUN H, et al. Per- and polyfluoroalkyl substances (PFASs) in indoor air and dust from homes and various microenvironments in China:Implications for human exposure[J]. Environmental Science & Technology, 2018, 52(5):3156-3166.
    [80] WANG N, SZOSTEK B, FOLSOM P W, et al. Aerobic biotransformation of C-14-labeled 8-2 telomer B alcohol by activated sludge from a domestic sewage treatment plant[J]. Environmental Science & Technology, 2005, 39(2):531-538.
    [81] WANG N, SZOSTEK B, BUCK R C, et al. 8-2 Fluorotelomer alcohol aerobic soil biodegradation:Pathways, metabolites, and metabolite yields[J]. Chemosphere, 2009, 75(8):1089-1096.
    [82] DINGLASAN M J A, YE Y, EDWARDS E A, et al. Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids[J]. Environmental Science & Technology, 2004, 38(10):2857-2864.
    [83] KIM M H, WANG N, MCDONALD T, et al. Biodefluorination and biotransformation of fluorotelomer alcohols by two alkane-degrading Pseudomonas strains[J]. Biotechnology and Bioengineering, 2012, 109(12):3041-3048.
    [84] LI F, SU Q, ZHOU Z, et al. Anaerobic biodegradation of 8:2 fluorotelomer alcohol in anaerobic activated sludge:Metabolic products and pathways[J]. Chemosphere, 2018, 200:124-132.
    [85] 何娜, 周萌, 汪磊, 等. 6-2氟调醇在活性污泥中的降解[J]. 环境科学学报, 2013, 33(2):383-388.

    HE N, ZHOU M, WANG L, et al. Biodegradation of 6-2 fluorotelomer alchol in activated sludge[J]. Acta Scientiae Circumstantiae, 2013, 33(2):383-388(in Chinese).

    [86] ZHANG S, MERINO N, WANG N, et al. Impact of 6:2 fluorotelomer alcohol aerobic biotransformation on a sediment microbial community[J]. Science of the Total Environment, 2017, 575:1361-1368.
    [87] LIU J, WANG N, BUCK R C, et al. Aerobic biodegradation of[C-14] 6:2 fluorotelomer alcohol in a flow-through soil incubation system[J]. Chemosphere, 2010, 80(7):716-723.
    [88] LIU J, WANG N, SZOSTEK B, et al. 6-2 Fluorotelomer alcohol aerobic biodegradation in soil and mixed bacterial culture[J]. Chemosphere, 2010, 78(4):437-444.
    [89] WASHINGTON J W, ELLINGTON J J, JENKINS T M, et al. Degradability of an acrylate-linked, fluorotelomer polymer in soil[J]. Environmental Science & Technology, 2009, 43(17):6617-6623.
    [90] LIOU J S C, SZOSTEK B, DERITO C M, et al. Investigating the biodegradability of perfluorooctanoic acid[J]. Chemosphere, 2010, 80(2):176-183.
    [91] WANG N, BUCK R C, SZOSTEK B, et al. 5:3 Polyfluorinated acid aerobic biotransformation in activated sludge via novel "one-carbon removal pathways"[J]. Chemosphere, 2012, 87(5):527-534.
    [92] KIM M H, WANG N, CHU K H. 6:2 Fluorotelomer alcohol (6:2 FTOH) biodegradation by multiple microbial species under different physiological conditions[J]. Applied Microbiology and Biotechnology, 2014, 98(4):1831-1840.
    [93] LIU J, AVENDANO S M. Microbial degradation of polyfluoroalkyl chemicals in the environment:A review[J]. Environment International, 2013, 61:98-114.
    [94] HAGEN D F, BELISLE J, JOHNSON J D, et al. Characterization of fluorinated metabolites by a gas chromatographic-helium microwave plasma detector-The biotransformation of 1H,1H,2H,2H-perfluorodecanol to perfluorooctanoate[J]. Analytical Biochemistry, 1981, 118(2):336-343.
    [95] FASANO W J, CARPENTER S C, GANNON S A, et al. Absorption, distribution, metabolism, and elimination of 8-2 fluorotelomer alcohol in the rat[J]. Toxicological Sciences, 2006, 91(2):341-355.
    [96] FASANO W J, SWEENEY L M, MAWN M P, et al. Kinetics of 8-2 fluorotelomer alcohol and its metabolites, and liver glutathione status following daily oral dosing for 45 days in male and female rats[J]. Chemico-Biological Interactions, 2009, 180(2):281-295.
    [97] HIMMELSTEIN M W, SEREX T L, BUCK R C, et al. 8:2 Fluorotelomer alcohol:A one-day nose-only inhalation toxicokinetic study in the Sprague-Dawley rat with application to risk assessment[J]. Toxicology, 2012, 291(1/3):122-132.
    [98] MARTIN J W, MABURY S A, O'BRIEN P J. Metabolic products and pathways of fluorotelomer alcohols in isolated rat hepatocytes[J]. Chemico-Biological Interactions, 2005, 155(3):165-180.
    [99] MARTIN J W, CHAN K, MABURY S A, et al. Bioactivation of fluorotelomer alcohols in isolated rat hepatocytes[J]. Chemico-Biological Interactions, 2009, 177(3):196-203.
    [100] RAND A A, MABURY S A. Covalent binding of fluorotelomer unsaturated aldehydes (FTUALs) and carboxylic acids (FTUCAs) to proteins[J]. Environmental Science & Technology, 2013, 47(3):1655-1663.
    [101] RAND A A, MABURY S A. Protein binding associated with exposure to fluorotelomer alcohols (FTOHs) and polyfluoroalkyl phosphate esters (PAPs) in rats[J]. Environmental Science & Technology, 2014, 48(4):2421-2429.
    [102] RUSSELL M H, HIMMELSTEIN M W, BUCK R C. Inhalation and oral toxicokinetics of 6:2 FTOH and its metabolites in mammals[J]. Chemosphere, 2015, 120:328-335.
    [103] BUTT C M, MUIR D C G, MABURY S A. Elucidating the pathways of poly- and perfluorinated acid formation in rainbow trout[J]. Environmental Science & Technology, 2010, 44(13):4973-4980.
    [104] BRANDSMA S H, SMITHWICK M, SOLOMON K, et al. Dietary exposure of rainbow trout to 8:2 and 10:2 fluorotelomer alcohols and perfluorooctanesulfonamide:Uptake, transformation and elimination[J]. Chemosphere, 2011, 82(2):253-258.
    [105] ZHANG H, WEN B, HU X, et al. Uptake, translocation, and metabolism of 8:2 fluorotelomer alcohol in soybean (Glycine max L. Merrill)[J]. Environmental Science & Technology, 2016, 50(24):13309-13317.
    [106] ZHANG H, WEN B, HUANG H, et al. Biotransformation of 6:2 fluorotelomer alcohol by the whole soybean (Glycine max L. Merrill) seedlings[J]. Environmental Pollution, 2020, 257:113513.
    [107] ZHAO S, ZHU L. Uptake and metabolism of 10:2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems[J]. Environmental Pollution, 2017, 220:124-131.
    [108] FROMME H, TITTLEMIER S A, VÖLKEL W, et al. Perfluorinated compounds-Exposure assessment for the general population in western countries[J]. International Journal of Hygiene and Environmental Health, 2009, 212(3):239-270.
    [109] NILSSON H, KÄRRMAN A, WESTBERG H, et al. A time trend study of significantly elevated perfluorocarboxylate levels in humans after using fluorinated ski wax[J]. Environmental Science & Technology, 2010, 44(6):2150-2155.
    [110] DUAN Y, SUN H, YAO Y, et al. Distribution of novel and legacy per-/polyfluoroalkyl substances in serum and its associations with two glycemic biomarkers among Chinese adult men and women with normal blood glucose levels[J]. Environment International, 2020, 134:105295.
    [111] LI Z M, GUO L H, REN X M. Biotransformation of 8:2 fluorotelomer alcohol by recombinant human cytochrome P450s, human liver microsomes and human liver cytosol[J]. Environmental Science-Processes & Impacts, 2016, 18:538-546.
    [112] DAGNINO S, STRYNAR M J, MCMAHEN R L, et al. Identification of biomarkers of exposure to FTOHs and PAPs in humans using a targeted and nontargeted analysis approach[J]. Environmental Science & Technology, 2016, 50(18):10216-10225.
    [113] LADICS G S, KENNEDY G L, O'CONNOR J, et al. 90-Day oral gavage toxicity study of 8-2 fluorotelomer alcohol in rats[J]. Drug and Chemical Toxicology, 2008, 31(2):189-216.
    [114] LADICS G S, STADLER J C, MAKOVEC G T, et al. Subchronic toxicity of a fluoroalkylethanol mixture in rats[J]. Drug and Chemical Toxicology, 2005, 28(2):135-158.
    [115] KUDO N, IWASE Y, OKAYACHI H, et al. Induction of hepatic peroxisome proliferation by 8-2 telomer alcohol feeding in mice:Formation of perfluorooctanoic acid in the liver[J]. Toxicological Sciences, 2005, 86(2):231-238.
    [116] WANG X, KONG B, HE B, et al. 8:2 Fluorotelomer alcohol causes immunotoxicity and liver injury in adult male C57BL/6 mice[J]. Environmental Toxicology, 2019, 34(2):141-149.
    [117] MYLCHREEST E, LADICS G S, MUNLEY S M, et al. Evaluation of the reproductive and developmental toxicity of a fluoroalkylethanol mixture[J]. Drug and Chemical Toxicology, 2005, 28(2):159-175.
    [118] MARAS M, VANPARYS C, MUYLLE F, et al. Estrogen-like properties of fluorotelomer alcohols as revealed by MCF-7 breast cancer cell proliferation[J]. Environmental Health Perspectives, 2006, 114(1):100-105.
    [119] VANPARYS C, MARAS M, LENJOU M, et al. Flow cytometric cell cycle analysis allows for rapid screening of estrogenicity in MCF-7 breast cancer cells[J]. Toxicology in Vitro, 2006, 20(7):1238-1248.
    [120] ISHIBASHI H, YAMAUCHI R, MATSUOKA M, et al. Fluorotelomer alcohols induce hepatic vitellogenin through activation of the estrogen receptor in male medaka (Oryzias latipes)[J]. Chemosphere, 2008, 71(10):1853-1859.
    [121] LIU C, DU Y, ZHOU B. Evaluation of estrogenic activities and mechanism of action of perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia hepatocytes[J]. Aquatic Toxicology, 2007, 85(4):267-277.
    [122] WANG X, ZHOU C, HE B, et al. 8:2 Fluorotelomer alcohol causes G1 cell cycle arrest and blocks granulocytic differentiation in HL-60 cells[J]. Environmental Toxicology, 2019, 34(5):666-673.
    [123] KONG B, WANG X, HE B, et al. 8:2 Fluorotelomer alcohol inhibited proliferation and disturbed the expression of pro-inflammatory cytokines and antigen-presenting genes in murine macrophages[J]. Chemosphere, 2019, 219:1052-1060.
    [124] LIU C, YU L, DENG J, et al. Waterborne exposure to fluorotelomer alcohol 6:2 FTOH alters plasma sex hormone and gene transcription in the hypothalamic-pituitary-gonadal (HPG) axis of zebrafish[J]. Aquatic Toxicology, 2009, 93(2/3):131-137.
    [125] LIU C, DENG J, YU L, et al. Endocrine disruption and reproductive impairment in zebrafish by exposure to 8:2 fluorotelomer alcohol[J]. Aquatic Toxicology, 2010, 96(1):70-76.
    [126] LIU C, ZHANG X, CHANG H, et al. Effects of fluorotelomer alcohol 8:2 FTOH on steroidogenesis in H295R cells:Targeting the cAMP signalling cascade[J]. Toxicology and Applied Pharmacology, 2010, 247(3):222-228.
    [127] LOVELESS S E, FINLAY C, EVERDS N E, et al. Comparative responses of rats and mice exposed to linear/branched, linear, or branched ammonium perfluorooctanoate (APFO)[J]. Toxicology, 2006, 220(2/3):203-217.
    [128] PERKINS R G, BUTENHOFF J L, JR K G, et al. 13-Week dietary toxicity study of ammonium perfluorooctanoate (APFO) in male rats[J]. Drug and Chemical Toxicology, 2004, 27(4):361-378.
    [129] PHILLIPS M M, DINGLASAN-PANLILIO M J, MABURY S A, et al. Fluorotelomer acids are more toxic than perfluorinated acids[J]. Environmental Science & Technology, 2007, 41(20):7159-7163.
    [130] RAND A A, ROONEY J P, BUTT C M, et al. Cellular toxicity associated with exposure to perfluorinated carboxylates (PFCAs) and their metabolic precursors[J]. Chemical Research in Toxicology, 2014, 27(1):42-50.
    [131] SHI G, CUI Q, PAN Y, et al. 6:2 Fluorotelomer carboxylic acid (6:2 FTCA) exposure induces developmental toxicity and inhibits the formation of erythrocytes during zebrafish embryogenesis[J]. Aquatic Toxicology, 2017, 190:53-61.
  • 加载中
计量
  • 文章访问数:  4704
  • HTML全文浏览数:  4704
  • PDF下载数:  165
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-01
张宏娜, 温蓓, 张淑贞. 全氟烷基羧酸前体物氟调醇的污染水平与生物转化研究进展[J]. 环境化学, 2021, (1): 65-82. doi: 10.7524/j.issn.0254-6108.2020020101
引用本文: 张宏娜, 温蓓, 张淑贞. 全氟烷基羧酸前体物氟调醇的污染水平与生物转化研究进展[J]. 环境化学, 2021, (1): 65-82. doi: 10.7524/j.issn.0254-6108.2020020101
ZHANG Hongna, WEN Bei, ZHANG Shuzhen. Environmental occurrence and biotransformation of perfluoroalkyl carboxylic acid precursors: Fluorotelomer alcohols[J]. Environmental Chemistry, 2021, (1): 65-82. doi: 10.7524/j.issn.0254-6108.2020020101
Citation: ZHANG Hongna, WEN Bei, ZHANG Shuzhen. Environmental occurrence and biotransformation of perfluoroalkyl carboxylic acid precursors: Fluorotelomer alcohols[J]. Environmental Chemistry, 2021, (1): 65-82. doi: 10.7524/j.issn.0254-6108.2020020101

全氟烷基羧酸前体物氟调醇的污染水平与生物转化研究进展

    通讯作者: 温蓓, E-mail: bwen@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京, 100085;
  • 2. 香港浸会大学化学系, 环境与生物分析国家重点实验室, 中国香港特别行政区, 999077;
  • 3. 中国科学院大学, 北京, 100049
基金项目:

国家自然科学基金(21537005,21806134,41671465)资助.

摘要: 全氟烷基羧酸(perfluorocarboxylic acids,PFCAs)普遍具有环境持久性、生物富集性及生物毒性效应.随着政府和国际组织对PFCAs生产和排放的监控和管制,探究PFCAs的间接来源变得愈加迫切.氟调醇(fluorotelomer alcohols,FTOHs)是生产含氟聚合物和含氟表面活性剂的重要原材料,被广泛应用于消费品与工业产品的生产.此外,FTOHs也是多种氟调类产品降解转化过程的主要中间体.FTOHs的降解已被普遍认为是环境和生物体中PFCAs重要的间接来源.FTOHs进入环境后可进行长距离迁移,并且能够在环境介质和生物体内不断转化,生成一系列多氟类中间物质,最终转化生成不同链长的PFCAs.近期研究发现,FTOHs的多氟类中间代谢物表现出比PFCAs更强的生物毒性效应.因此,只有全面了解FTOHs的污染水平与生物转化过程,才能正确评估FTOHs暴露的环境和健康风险.本文全面介绍了FTOHs的理化性质与环境中的来源,概述了FTOHs的分析方法和环境污染状况,分析了FTOHs在不同生物介质中的转化过程,并解析了FTOHs的致毒机制.

English Abstract

参考文献 (131)

返回顶部

目录

/

返回文章
返回