全氟烷基羧酸前体物氟调醇的污染水平与生物转化研究进展
Environmental occurrence and biotransformation of perfluoroalkyl carboxylic acid precursors: Fluorotelomer alcohols
-
摘要: 全氟烷基羧酸(perfluorocarboxylic acids,PFCAs)普遍具有环境持久性、生物富集性及生物毒性效应.随着政府和国际组织对PFCAs生产和排放的监控和管制,探究PFCAs的间接来源变得愈加迫切.氟调醇(fluorotelomer alcohols,FTOHs)是生产含氟聚合物和含氟表面活性剂的重要原材料,被广泛应用于消费品与工业产品的生产.此外,FTOHs也是多种氟调类产品降解转化过程的主要中间体.FTOHs的降解已被普遍认为是环境和生物体中PFCAs重要的间接来源.FTOHs进入环境后可进行长距离迁移,并且能够在环境介质和生物体内不断转化,生成一系列多氟类中间物质,最终转化生成不同链长的PFCAs.近期研究发现,FTOHs的多氟类中间代谢物表现出比PFCAs更强的生物毒性效应.因此,只有全面了解FTOHs的污染水平与生物转化过程,才能正确评估FTOHs暴露的环境和健康风险.本文全面介绍了FTOHs的理化性质与环境中的来源,概述了FTOHs的分析方法和环境污染状况,分析了FTOHs在不同生物介质中的转化过程,并解析了FTOHs的致毒机制.Abstract: Perfluorocarboxylic acids (PFCAs) have received great regulatory attention from the government and international organizations due to their environmental persistence, bioaccumulation and potential toxicity. With the effective reduction of their production and emission in recent years, exploring the indirect sources of PFCAs has become increasingly important. Fluorotelomer alcohols (FTOHs) are important raw materials used to produce fluoropolymers and fluorosurfactants, which have been incorporated into a variety of consumer and industrial products. Moreover, FTOHs are also primary biotransformation intermediates of multiple fluorotelomer-based substances. Degradation of FTOHs has been widely considered as an additional source of PFCAs in the environment and biological species. After entering the environment, FTOHs can undergo long-range transport and can be transformed into polyfluorinated intermediates, and finally oxidized to different carbon-chain lengths of PFCAs. Recent studies also showed that polyfluorinated intermediate metabolites of FTOHs exhibited higher biotoxicity than PFCAs. Therefore, to accurately reveal the environmental and health risks of FTOHs, it is essential to understand their environmental levels and biotransformation routes. In this paper, the sources and physicochemical properties of FTOHs were introduced, the analytical methods and environmental occurrence of FTOHs were reviewed, and the biotransformation processes and toxic mechanisms of FTOHs were analyzed.
-
Key words:
- FTOHs /
- PFCAs /
- environmental occurrence /
- biodegradation /
- toxic mechanism
-
[1] PREVEDOUROS K, COUSINS I T, BUCK R C, et al. Sources, fate and transport of perfluorocarboxylates[J]. Environmental Science & Technology, 2006, 40(1):32-44. [2] LINDSTROM A B, STRYNAR M J, LIBELO E L. Polyfluorinated compounds:Past, present, and future[J]. Environmental Science & Technology, 2011, 45(19):7954-7961. [3] KRAFFT M P, RIESS J G. Per- and polyfluorinated substances (PFASs):Environmental challenges[J]. Current Opinion in Colloid & Interface Science, 2015, 20(3):192-212. [4] BENBRAHIM-TALLAA L, LAUBY-SECRETAN B, LOOMIS D, et al. Carcinogenicity of perfluorooctanoic acid, tetrafluoroethylene, dichloromethane, 1,2-dichloropropane, and 1,3-propane sultone[J]. Lancet Oncology, 2014, 15(9):924-925. [5] UNEP. Listing of perfluorooctanoic acid (PFOA), its salts and PFOA-related compounds; UNEP/POP/COP.9/SC-9/12[EB/OL].[2019-12-16]. http://chm.pops.int/TheConvention/ConferenceoftheParties/Meetings/COP9/tabid/7521/Default.aspx. [6] FROMEL T, KNEPPER T P. Biodegradation of fluorinated alkyl substances[J]. Reviews of Environmental Contamination and Toxicology, 2010, 208:161-177. [7] NILSSON H, KARRMAN A, ROTANDER A, et al. Biotransformation of fluorotelomer compound to perfluorocarboxylates in humans[J]. Environment International, 2013, 51:8-12. [8] YUAN G, PENG H, HUANG C, et al. Ubiquitous occurrence of fluorotelomer alcohols in eco-friendly paper-made food-contact materials and their implication for human exposure[J]. Environmental Science & Technology, 2016, 50(2):942-950. [9] D'EON J C, MABURY S A. Is indirect exposure a significant contributor to the burden of perfluorinated acids observed in humans?[J]. Environmental Science & Technology, 2011, 45(19):7974-7984. [10] YOUNG C J, FURDUI V I, FRANKLIN J, et al. Perfluorinated acids in Arctic snow:New evidence for atmospheric formation[J]. Environmental Science & Technology, 2007, 41(10):3455-3461. [11] SHOEIB M, HARNER T, VLAHOS P. Perfluorinated chemicals in the Arctic atmosphere[J]. Environmental Science & Technology, 2006, 40(24):7577-7583. [12] DE SILVA A O, MABURY S A. Isolating isomers of perfluorocarboxylates in polar bears (Ursus maritimus) from two geographical locations[J]. Environmental Science & Technology, 2004, 38(24):6538-6545. [13] WANG X, HALSALL C, CODLING G, et al. Accumulation of perfluoroalkyl compounds in Tibetan Mountain snow:Temporal patterns from 1980 to 2010[J]. Environmental Science & Technology, 2014, 48(1):173-181. [14] BENSKIN J P, PHILLIPS V, ST. LOUIS V L, et al. Source elucidation of perfluorinated carboxylic acids in remote alpine lake sediment cores[J]. Environmental Science & Technology, 2011, 45(17):7188-7194. [15] WANG N, SZOSTEK B, BUCK R C, et al. Fluorotelomer alcohol biodegradation-Direct evidence that perfluorinated carbon chains breakdown[J]. Environmental Science & Technology, 2005, 39(19):7516-7528. [16] LIU J, LEE L S, NIES L F, et al. Biotransformation of 8:2 fluorotelomer alcohol in soil and by soil bacteria isolates[J]. Environmental Science & Technology, 2007, 41(23):8024-8030. [17] CARMOSINI N, LEE L S. Partitioning of fluorotelomer alcohols to octanol and different sources of dissolved organic carbon[J]. Environmental Science & Technology, 2008, 42(17):6559-6565. [18] DINGLASAN-PANLILIO M J A, MABURY S A. Significant residual fluorinated alcohols present in various fluorinated materials[J]. Environmental Science & Technology, 2006, 40(5):1447-1453. [19] LIU J, LEE L S. Effect of fluorotelomer alcohol chain length on aqueous solubility and sorption by soils[J]. Environmental Science & Technology, 2007, 41(15):5357-5362. [20] LIU J, LEE L S. Solubility and sorption by soils of 8:2 fluorotelomer alcohol in water and cosolvent systems[J]. Environmental Science & Technology, 2005, 39(19):7535-7540. [21] STOCK N L, ELLIS D A, DELEEBEECK L, et al. Vapor pressures of the fluorinated telomer alcohols-Limitations of estimation methods[J]. Environmental Science & Technology, 2004, 38(6):1693-1699. [22] ARP H P H, NIEDERER C, GOSS K U. Predicting the partitioning behavior of various highly fluorinated compounds[J]. Environmental Science & Technology, 2006, 40(23):7298-7304. [23] OECD. Preliminary lists of PFOS, PFAS, PFOA and related compounds and chemicals that may degrade to PFCA[J]. OECD Papers, 2006, 6(11):158-351. [24] D'EON J C, CROZIER P W, FURDUI V I, et al. Observation of a commercial fluorinated material, the polyfluoroalkyl phosphoric acid diesters, in human sera, wastewater treatment plant sludge, and paper fibers[J]. Environmental Science & Technology, 2009, 43(12):4589-4594. [25] LEE H, D'EON J, MABURY S A. Biodegradation of polyfluoroalkyl phosphates as a source of perfluorinated acids to the environment[J]. Environmental Science & Technology, 2010, 44(9):3305-3310. [26] CHEN M, GUO T, HE K, et al. Biotransformation and bioconcentration of 6:2 and 8:2 polyfluoroalkyl phosphate diesters in common carp (Cyprinus carpio):Underestimated ecological risks[J]. Science of the Total Environment, 2019, 656:201-208. [27] DASU K, LIU J, LEE L S. Aerobic soil biodegradation of 8:2 fluorotelomer stearate monoester[J]. Environmental Science & Technology, 2012, 46(7):3831-3836. [28] BUTT C M, MUIR D C, MABURY S A. Biotransformation of the 8:2 fluorotelomer acrylate in rainbow trout. 1. In vivo dietary exposure[J]. Environmental Toxicology and Chemistry, 2010, 29(12):2726-2735. [29] BUTT C M, YOUNG C J, MABURY S A, et al. Atmospheric chemistry of 4:2 fluorotelomer acrylate C4F9CH2CH2OC(O)CH=CH2:Kinetics, mechanisms, and products of chlorine-atom- and OH-radical-initiated oxidation[J]. Journal of Physical Chemistry A, 2009, 113(13):3155-3161. [30] WANG N, LIU J, BUCK R C, et al. 6:2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants[J]. Chemosphere, 2011, 82(6):853-858. [31] SHAW D M J, MUNOZ G, BOTTOS E M, et al. Degradation and defluorination of 6:2 fluorotelomer sulfonamidoalkyl betaine and 6:2 fluorotelomer sulfonate by Gordonia sp. strain NB4-1Y under sulfur-limiting conditions[J]. Science of the Total Environment, 2019, 647:690-698. [32] RUAN T, SZOSTEK B, FOLSOM P W, et al. Aerobic soil biotransformation of 6:2 fluorotelomer iodide[J]. Environmental Science & Technology, 2013, 47(20):11504-11511. [33] RUAN T, WANG Y W, WANG T, et al. Presence and partitioning behavior of polyfluorinated iodine alkanes in environmental matrices around a fluorochemical manufacturing plant:Another possible source for perfluorinated carboxylic acids?[J]. Environmental Science & Technology, 2010, 44(15):5755-5761. [34] RANKIN K, LEE H, TSENG P J, et al. Investigating the biodegradability of a fluorotelomer-based acrylate polymer in a soil-plant microcosm by indirect and direct analysis[J]. Environmental Science & Technology, 2014, 48(21):12783-12790. [35] RUSSELL M H, BERTI W R, SZOSTEK B, et al. Investigation of the biodegradation potential of a fluoroacrylate polymer product in aerobic soils[J]. Environmental Science & Technology, 2008, 42(3):800-807. [36] LI L, LIU J, HU J, et al. Degradation of fluorotelomer-based polymers contributes to the global occurrence of fluorotelomer alcohol and perfluoroalkyl carboxylates:A combined dynamic substance flow and environmental fate modeling analysis[J]. Environmental Science & Technology, 2017, 51(8):4461-4470. [37] SZOSTEK B, PRICKETT K B. Determination of 8:2 fluorotelomer alcohol in animal plasma and tissues by gas chromatography-mass spectrometry[J]. Journal of Chromatography B, 2004, 813(1/2):313-321. [38] MARTIN J W, MUIR D C G, MOODY C A, et al. Collection of airborne fluorinated organics and analysis by gas chromatography/chemical ionization mass spectrometry[J]. Analytical Chemistry, 2002, 74(3):584-590. [39] ELLINGTON J J, WASHINGTON J W, EVANS J J, et al. Analysis of fluorotelomer alcohols in soils:Optimization of extraction and chromatography[J]. Journal of Chromatography A, 2009, 1216(28):5347-5354. [40] YOO H, WASHINGTON J W, ELLINGTON J J, et al. Concentrations, distribution, and persistence of fluorotelomer alcohols in sludge-applied soils near Decatur, Alabama, USA[J]. Environmental Science & Technology, 2010, 44(22):8397-8402. [41] YOO H, WASHINGTON J W, JENKINS T M, et al. Quantitative determination of perfluorochemicals and fluorotelomer alcohols in plants from biosolid-amended fields using LC/MS/MS and GC/MS[J]. Environmental Science & Technology, 2011, 45(19):7985-7990. [42] RIEDEL T P, LANG J R, STRYNAR M J, et al. Gas-phase detection of fluorotelomer alcohols and other oxygenated per- and polyfluoroalkyl substances by chemical ionization mass spectrometry[J]. Environmental Science & Technology Letters, 2019, 6(5):289-293. [43] SZOSTEK B, PRICKETT K B, BUCK R C. Determination of fluorotelomer alcohols by liquid chromatography/tandem mass spectrometry in water[J]. Rapid Communications in Mass Spectrometry, 2006, 20(19):2837-2844. [44] ZHANG S, SZOSTEK B, MCCAUSLAND P K, et al. 6:2 and 8:2 Fluorotelomer alcohol anaerobic biotransformation in digester sludge from a WWTP under methanogenic conditions[J]. Environmental Science & Technology, 2013, 47(9):4227-4235. [45] ZHAO L, FOLSOM P W, WOLSTENHOLME B W, et al. 6:2 Fluorotelomer alcohol biotransformation in an aerobic river sediment system[J]. Chemosphere, 2013, 90(2):203-209. [46] NABB D L, SZOSTEK B, HIMMELSTEIN M W, et al. In vitro metabolism of 8-2 fluorotelomer alcohol:Interspecies comparisons and metabolic pathway refinement[J]. Toxicological Sciences, 2007, 100(2):333-344. [47] BERGER U, LANGLOIS I, OEHME M, et al. Comparison of three types of mass spectrometer for high-performance liquid chromatography/mass spectrometry analysis of perfluoroalkylated substances and fluorotelomer alcohols[J]. European Journal of Mass Spectrometry, 2004, 10(5):579-588. [48] ZHANG H, WEN B, HU X, et al. Determination of fluorotelomer alcohols and their degradation products in biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2015, 1404:72-80. [49] PENG H, HU K, ZHAO F, et al. Derivatization method for sensitive determination of fluorotelomer alcohols in sediment by liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1288:48-53. [50] WONG F, SHOEIB M, KATSOYIANNIS A, et al. Assessing temporal trends and source regions of per- and polyfluoroalkyl substances (PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP)[J]. Atmospheric Environment, 2018, 172:65-73. [51] JAHNKE A, BERGER U, EBINGHAUS R, et al. Latitudinal gradient of airborne polyfluorinated alkyl substances in the marine atmosphere between Germany and South Africa (53°N-33°S)[J]. Environmental Science & Technology, 2007, 41(9):3055-3061. [52] LI J, DEL VENTO S, SCHUSTER J, et al. Perfluorinated compounds in the Asian atmosphere[J]. Environmental Science & Technology, 2011, 45(17):7241-7248. [53] AHRENS L, SHOEIB M, HARNER T, et al. Wastewater treatment plant and landfills as sources of polyfluoroalkyl compounds to the atmosphere[J]. Environmental Science & Technology, 2011, 45(19):8098-8105. [54] TIAN Y, YAO Y, CHANG S, et al. Occurrence and phase distribution of neutral and ionizable per- and polyfluoroalkyl substances (PFASs) in the atmosphere and plant leaves around landfills:A case study in Tianjin, China[J]. Environmental Science & Technology, 2018, 52(3):1301-1310. [55] KIM S K, SHOEIB M, KIM K S, et al. Indoor and outdoor poly- and perfluoroalkyl substances (PFASs) in Korea determined by passive air sampler[J]. Environmental Pollution, 2012, 162:144-150. [56] SHOEIB M, HARNER T, WEBSTER G M, et al. Indoor sources of poly- and perfluorinated compounds (PFCS) in Vancouver, Canada:Implications for human exposure[J]. Environmental Science & Technology, 2011, 45(19):7999-8005. [57] NILSSON H, KARRMAN A, ROTANDER A, et al. Inhalation exposure to fluorotelomer alcohols yield perfluorocarboxylates in human blood?[J]. Environmental Science & Technology, 2010, 44(19):7717-7722. [58] STRYNAR M J, LINDSTROM A B. Perfluorinated compounds in house dust from Ohio and North Carolina, USA[J]. Environmental Science & Technology, 2008, 42(10):3751-3756. [59] XIE Z, ZHAO Z, MOLLER A, et al. Neutral poly- and perfluoroalkyl substances in air and seawater of the North Sea[J]. Environmental Science and Pollution Research, 2013, 20(11):7988-8000. [60] MAHMOUD M A M, KÄRRMAN A, OONO S, et al. Polyfluorinated telomers in precipitation and surface water in an urban area of Japan[J]. Chemosphere, 2009, 74(3):467-472. [61] BACH C, BOITEUX V, HEMARD J, et al. Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction-gas chromatography/mass spectrometry[J]. Journal of Chromatography A, 2016, 1448:98-106. [62] TANIYASU S, KANNAN K, SO M K, et al. Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota[J]. Journal of Chromatography A, 2005, 1093(1/2):89-97. [63] SINCLAIR E, KANNAN K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants[J]. Environmental Science & Technology, 2006, 40(5):1408-1414. [64] ZHANG T, SUN H, GERECKE A C, et al. Comparison of two extraction methods for the analysis of per- and polyfluorinated chemicals in digested sewage sludge[J]. Journal of Chromatography A, 2010, 1217(31):5026-5034. [65] CHEN H, PENG H, YANG M, et al. Detection, occurrence, and fate of fluorotelomer alcohols in municipal wastewater treatment plants[J]. Environmental Science & Technology, 2017, 51(16):8953-8961. [66] WASHINGTON J W, YOO H, ELLINGTON J J, et al. Concentrations, distribution, and persistence of perfluoroalkylates in sludge-applied soils near Decatur, Alabama, USA[J]. Environmental Science & Technology, 2010, 44(22):8390-8396. [67] XU Z, LI L, HENKELMANN B, et al. Occurrence of fluorotelomer alcohols at two Alpine summits:Sources, transport and temporal trends[J]. Environmental Chemistry, 2017, 14(4):215-223. [68] XIE Z, WANG Z, MI W, et al. Neutral poly-/perfluoroalkyl substances in air and snow from the Arctic[J]. Scientific Reports, 2015, 5(1):8912. [69] BOSSI R, VORKAMP K, SKOV H. Concentrations of organochlorine pesticides, polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland[J]. Environmental Pollution, 2016, 217:4-10. [70] YAO Y, CHANG S, SUN H, et al. Neutral and ionic per- and polyfluoroalkyl substances (PFASs) in atmospheric and dry deposition samples over a source region (Tianjin, China)[J]. Environmental Pollution, 2016, 212:449-456. [71] HEYDEBRECK F, TANG J, XIE Z, et al. Emissions of per- and polyfluoroalkyl substances in a textile manufacturing plant in China and their relevance for workers' exposure[J]. Environmental Science & Technology, 2016, 50(19):10386-10396. [72] SCHLUMMER M, GRUBER L, FIEDLER D, et al. Detection of fluorotelomer alcohols in indoor environments and their relevance for human exposure[J]. Environment International, 2013, 57/58:42-49. [73] LIU W, TAKAHASHI S, SAKURAMACHI Y, et al. Polyfluorinated telomers in indoor air of Japanese houses[J]. Chemosphere, 2013, 90(5):1672-1677. [74] HAUG L S, HUBER S, SCHLABACH M, et al. Investigation on per- and polyfluorinated compounds in paired samples of house dust and indoor air from Norwegian homes[J]. Environmental Science & Technology, 2011, 45(19):7991-7998. [75] PADILLA-SÁNCHEZ J A, PAPADOPOULOU E, POOTHONG S, et al. Investigation of the best approach for assessing human exposure to poly- and perfluoroalkyl substances through indoor air[J]. Environmental Science & Technology, 2017, 51(21):12836-12843. [76] SHA B, DAHLBERG A-K, WIBERG K, et al. Fluorotelomer alcohols (FTOHs), brominated flame retardants (BFRs), organophosphorus flame retardants (OPFRs) and cyclic volatile methylsiloxanes (cVMSs) in indoor air from occupational and home environments[J]. Environmental Pollution, 2018, 241:319-330. [77] FRASER A J, WEBSTER T F, WATKINS D J, et al. Polyfluorinated compounds in serum linked to indoor air in office environments[J]. Environmental Science & Technology, 2012, 46(2):1209-1215. [78] ZHENG G, BOOR B E, SCHREDER E, et al. Indoor exposure to per- and polyfluoroalkyl substances (PFAS) in the childcare environment[J]. Environmental Pollution, 2020, 258:113714. [79] YAO Y, ZHAO Y, SUN H, et al. Per- and polyfluoroalkyl substances (PFASs) in indoor air and dust from homes and various microenvironments in China:Implications for human exposure[J]. Environmental Science & Technology, 2018, 52(5):3156-3166. [80] WANG N, SZOSTEK B, FOLSOM P W, et al. Aerobic biotransformation of C-14-labeled 8-2 telomer B alcohol by activated sludge from a domestic sewage treatment plant[J]. Environmental Science & Technology, 2005, 39(2):531-538. [81] WANG N, SZOSTEK B, BUCK R C, et al. 8-2 Fluorotelomer alcohol aerobic soil biodegradation:Pathways, metabolites, and metabolite yields[J]. Chemosphere, 2009, 75(8):1089-1096. [82] DINGLASAN M J A, YE Y, EDWARDS E A, et al. Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids[J]. Environmental Science & Technology, 2004, 38(10):2857-2864. [83] KIM M H, WANG N, MCDONALD T, et al. Biodefluorination and biotransformation of fluorotelomer alcohols by two alkane-degrading Pseudomonas strains[J]. Biotechnology and Bioengineering, 2012, 109(12):3041-3048. [84] LI F, SU Q, ZHOU Z, et al. Anaerobic biodegradation of 8:2 fluorotelomer alcohol in anaerobic activated sludge:Metabolic products and pathways[J]. Chemosphere, 2018, 200:124-132. [85] 何娜, 周萌, 汪磊, 等. 6-2氟调醇在活性污泥中的降解[J]. 环境科学学报, 2013, 33(2):383-388. HE N, ZHOU M, WANG L, et al. Biodegradation of 6-2 fluorotelomer alchol in activated sludge[J]. Acta Scientiae Circumstantiae, 2013, 33(2):383-388(in Chinese).
[86] ZHANG S, MERINO N, WANG N, et al. Impact of 6:2 fluorotelomer alcohol aerobic biotransformation on a sediment microbial community[J]. Science of the Total Environment, 2017, 575:1361-1368. [87] LIU J, WANG N, BUCK R C, et al. Aerobic biodegradation of[C-14] 6:2 fluorotelomer alcohol in a flow-through soil incubation system[J]. Chemosphere, 2010, 80(7):716-723. [88] LIU J, WANG N, SZOSTEK B, et al. 6-2 Fluorotelomer alcohol aerobic biodegradation in soil and mixed bacterial culture[J]. Chemosphere, 2010, 78(4):437-444. [89] WASHINGTON J W, ELLINGTON J J, JENKINS T M, et al. Degradability of an acrylate-linked, fluorotelomer polymer in soil[J]. Environmental Science & Technology, 2009, 43(17):6617-6623. [90] LIOU J S C, SZOSTEK B, DERITO C M, et al. Investigating the biodegradability of perfluorooctanoic acid[J]. Chemosphere, 2010, 80(2):176-183. [91] WANG N, BUCK R C, SZOSTEK B, et al. 5:3 Polyfluorinated acid aerobic biotransformation in activated sludge via novel "one-carbon removal pathways"[J]. Chemosphere, 2012, 87(5):527-534. [92] KIM M H, WANG N, CHU K H. 6:2 Fluorotelomer alcohol (6:2 FTOH) biodegradation by multiple microbial species under different physiological conditions[J]. Applied Microbiology and Biotechnology, 2014, 98(4):1831-1840. [93] LIU J, AVENDANO S M. Microbial degradation of polyfluoroalkyl chemicals in the environment:A review[J]. Environment International, 2013, 61:98-114. [94] HAGEN D F, BELISLE J, JOHNSON J D, et al. Characterization of fluorinated metabolites by a gas chromatographic-helium microwave plasma detector-The biotransformation of 1H,1H,2H,2H-perfluorodecanol to perfluorooctanoate[J]. Analytical Biochemistry, 1981, 118(2):336-343. [95] FASANO W J, CARPENTER S C, GANNON S A, et al. Absorption, distribution, metabolism, and elimination of 8-2 fluorotelomer alcohol in the rat[J]. Toxicological Sciences, 2006, 91(2):341-355. [96] FASANO W J, SWEENEY L M, MAWN M P, et al. Kinetics of 8-2 fluorotelomer alcohol and its metabolites, and liver glutathione status following daily oral dosing for 45 days in male and female rats[J]. Chemico-Biological Interactions, 2009, 180(2):281-295. [97] HIMMELSTEIN M W, SEREX T L, BUCK R C, et al. 8:2 Fluorotelomer alcohol:A one-day nose-only inhalation toxicokinetic study in the Sprague-Dawley rat with application to risk assessment[J]. Toxicology, 2012, 291(1/3):122-132. [98] MARTIN J W, MABURY S A, O'BRIEN P J. Metabolic products and pathways of fluorotelomer alcohols in isolated rat hepatocytes[J]. Chemico-Biological Interactions, 2005, 155(3):165-180. [99] MARTIN J W, CHAN K, MABURY S A, et al. Bioactivation of fluorotelomer alcohols in isolated rat hepatocytes[J]. Chemico-Biological Interactions, 2009, 177(3):196-203. [100] RAND A A, MABURY S A. Covalent binding of fluorotelomer unsaturated aldehydes (FTUALs) and carboxylic acids (FTUCAs) to proteins[J]. Environmental Science & Technology, 2013, 47(3):1655-1663. [101] RAND A A, MABURY S A. Protein binding associated with exposure to fluorotelomer alcohols (FTOHs) and polyfluoroalkyl phosphate esters (PAPs) in rats[J]. Environmental Science & Technology, 2014, 48(4):2421-2429. [102] RUSSELL M H, HIMMELSTEIN M W, BUCK R C. Inhalation and oral toxicokinetics of 6:2 FTOH and its metabolites in mammals[J]. Chemosphere, 2015, 120:328-335. [103] BUTT C M, MUIR D C G, MABURY S A. Elucidating the pathways of poly- and perfluorinated acid formation in rainbow trout[J]. Environmental Science & Technology, 2010, 44(13):4973-4980. [104] BRANDSMA S H, SMITHWICK M, SOLOMON K, et al. Dietary exposure of rainbow trout to 8:2 and 10:2 fluorotelomer alcohols and perfluorooctanesulfonamide:Uptake, transformation and elimination[J]. Chemosphere, 2011, 82(2):253-258. [105] ZHANG H, WEN B, HU X, et al. Uptake, translocation, and metabolism of 8:2 fluorotelomer alcohol in soybean (Glycine max L. Merrill)[J]. Environmental Science & Technology, 2016, 50(24):13309-13317. [106] ZHANG H, WEN B, HUANG H, et al. Biotransformation of 6:2 fluorotelomer alcohol by the whole soybean (Glycine max L. Merrill) seedlings[J]. Environmental Pollution, 2020, 257:113513. [107] ZHAO S, ZHU L. Uptake and metabolism of 10:2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems[J]. Environmental Pollution, 2017, 220:124-131. [108] FROMME H, TITTLEMIER S A, VÖLKEL W, et al. Perfluorinated compounds-Exposure assessment for the general population in western countries[J]. International Journal of Hygiene and Environmental Health, 2009, 212(3):239-270. [109] NILSSON H, KÄRRMAN A, WESTBERG H, et al. A time trend study of significantly elevated perfluorocarboxylate levels in humans after using fluorinated ski wax[J]. Environmental Science & Technology, 2010, 44(6):2150-2155. [110] DUAN Y, SUN H, YAO Y, et al. Distribution of novel and legacy per-/polyfluoroalkyl substances in serum and its associations with two glycemic biomarkers among Chinese adult men and women with normal blood glucose levels[J]. Environment International, 2020, 134:105295. [111] LI Z M, GUO L H, REN X M. Biotransformation of 8:2 fluorotelomer alcohol by recombinant human cytochrome P450s, human liver microsomes and human liver cytosol[J]. Environmental Science-Processes & Impacts, 2016, 18:538-546. [112] DAGNINO S, STRYNAR M J, MCMAHEN R L, et al. Identification of biomarkers of exposure to FTOHs and PAPs in humans using a targeted and nontargeted analysis approach[J]. Environmental Science & Technology, 2016, 50(18):10216-10225. [113] LADICS G S, KENNEDY G L, O'CONNOR J, et al. 90-Day oral gavage toxicity study of 8-2 fluorotelomer alcohol in rats[J]. Drug and Chemical Toxicology, 2008, 31(2):189-216. [114] LADICS G S, STADLER J C, MAKOVEC G T, et al. Subchronic toxicity of a fluoroalkylethanol mixture in rats[J]. Drug and Chemical Toxicology, 2005, 28(2):135-158. [115] KUDO N, IWASE Y, OKAYACHI H, et al. Induction of hepatic peroxisome proliferation by 8-2 telomer alcohol feeding in mice:Formation of perfluorooctanoic acid in the liver[J]. Toxicological Sciences, 2005, 86(2):231-238. [116] WANG X, KONG B, HE B, et al. 8:2 Fluorotelomer alcohol causes immunotoxicity and liver injury in adult male C57BL/6 mice[J]. Environmental Toxicology, 2019, 34(2):141-149. [117] MYLCHREEST E, LADICS G S, MUNLEY S M, et al. Evaluation of the reproductive and developmental toxicity of a fluoroalkylethanol mixture[J]. Drug and Chemical Toxicology, 2005, 28(2):159-175. [118] MARAS M, VANPARYS C, MUYLLE F, et al. Estrogen-like properties of fluorotelomer alcohols as revealed by MCF-7 breast cancer cell proliferation[J]. Environmental Health Perspectives, 2006, 114(1):100-105. [119] VANPARYS C, MARAS M, LENJOU M, et al. Flow cytometric cell cycle analysis allows for rapid screening of estrogenicity in MCF-7 breast cancer cells[J]. Toxicology in Vitro, 2006, 20(7):1238-1248. [120] ISHIBASHI H, YAMAUCHI R, MATSUOKA M, et al. Fluorotelomer alcohols induce hepatic vitellogenin through activation of the estrogen receptor in male medaka (Oryzias latipes)[J]. Chemosphere, 2008, 71(10):1853-1859. [121] LIU C, DU Y, ZHOU B. Evaluation of estrogenic activities and mechanism of action of perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia hepatocytes[J]. Aquatic Toxicology, 2007, 85(4):267-277. [122] WANG X, ZHOU C, HE B, et al. 8:2 Fluorotelomer alcohol causes G1 cell cycle arrest and blocks granulocytic differentiation in HL-60 cells[J]. Environmental Toxicology, 2019, 34(5):666-673. [123] KONG B, WANG X, HE B, et al. 8:2 Fluorotelomer alcohol inhibited proliferation and disturbed the expression of pro-inflammatory cytokines and antigen-presenting genes in murine macrophages[J]. Chemosphere, 2019, 219:1052-1060. [124] LIU C, YU L, DENG J, et al. Waterborne exposure to fluorotelomer alcohol 6:2 FTOH alters plasma sex hormone and gene transcription in the hypothalamic-pituitary-gonadal (HPG) axis of zebrafish[J]. Aquatic Toxicology, 2009, 93(2/3):131-137. [125] LIU C, DENG J, YU L, et al. Endocrine disruption and reproductive impairment in zebrafish by exposure to 8:2 fluorotelomer alcohol[J]. Aquatic Toxicology, 2010, 96(1):70-76. [126] LIU C, ZHANG X, CHANG H, et al. Effects of fluorotelomer alcohol 8:2 FTOH on steroidogenesis in H295R cells:Targeting the cAMP signalling cascade[J]. Toxicology and Applied Pharmacology, 2010, 247(3):222-228. [127] LOVELESS S E, FINLAY C, EVERDS N E, et al. Comparative responses of rats and mice exposed to linear/branched, linear, or branched ammonium perfluorooctanoate (APFO)[J]. Toxicology, 2006, 220(2/3):203-217. [128] PERKINS R G, BUTENHOFF J L, JR K G, et al. 13-Week dietary toxicity study of ammonium perfluorooctanoate (APFO) in male rats[J]. Drug and Chemical Toxicology, 2004, 27(4):361-378. [129] PHILLIPS M M, DINGLASAN-PANLILIO M J, MABURY S A, et al. Fluorotelomer acids are more toxic than perfluorinated acids[J]. Environmental Science & Technology, 2007, 41(20):7159-7163. [130] RAND A A, ROONEY J P, BUTT C M, et al. Cellular toxicity associated with exposure to perfluorinated carboxylates (PFCAs) and their metabolic precursors[J]. Chemical Research in Toxicology, 2014, 27(1):42-50. [131] SHI G, CUI Q, PAN Y, et al. 6:2 Fluorotelomer carboxylic acid (6:2 FTCA) exposure induces developmental toxicity and inhibits the formation of erythrocytes during zebrafish embryogenesis[J]. Aquatic Toxicology, 2017, 190:53-61.
计量
- 文章访问数: 4704
- HTML全文浏览数: 4704
- PDF下载数: 165
- 施引文献: 0