兽药抗生素对生态环境的混合毒性研究进展
Advance on combined toxicity of veterinary antibiotics on ecological environments
-
摘要: 抗生素是环境中普遍存在的污染物,畜牧水产养殖是其主要来源之一.环境中可能同时存在多种抗生素残留,因此单一药物的毒性评价难以反映抗生素对生态环境的影响,应探究其混合物的毒性效应.本文在总结大量文献的基础上,介绍了兽用抗生素的残留现状,总结了兽用抗生素对生态环境的混合毒性研究进展,讨论了兽用抗生素残留对土壤生物和水生生物的生态毒性效应,最后对兽用抗生素的环境混合毒性研究进行了展望.Abstract: Antibiotics are emerging pollutants that widely occur in the environment, and livestock farm and aquaculture are one of the main genres in the environment. Multiple antibiotic residues may exist in the environment at the same time, so the toxicity evaluation of a single drug can't be used to reflect the actual situation, and the toxic effects of antibiotics mixture should be explored. This paper reviewed the current research progress on the status of veterinary antibiotic residues, and the research progress of mixed toxicity of veterinary antibiotics to the ecological environment was summarized. Furthermore, the ecological toxicity effects of veterinary antibiotics on soil and aquatic organisms were discussed. Finally, the research prospects about the mixed toxicity of veterinary antibiotics to the environment were proposed.
-
[1] CARVALHO I T, SANTOS L. Antibiotics in the aquatic environments:A review of the European scenario[J]. Environment International, 2016, 94:736-757. [2] VAN BOECKEL T P, BROWER C, GILBERT M, et al. Global trends in antimicrobial use in food animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18):5649-5654. [3] STOICHEV T, BAPTISTA M S, BASTO M C P, et al. Effects of minocycline and its degradation products on the growth of Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2011, 74(3):219-224. [4] EBERT I, BACHMANN J, KUEHNEN U, et al. Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms[J]. Environmental Toxicology and Chemistry, 2011, 30(12):2786-2792. [5] WAGIL M, KUMIRSKA J, STOLTE S, et al. Development of sensitive and reliable LC-MS/MS methods for the determination of three fluoroquinolones in water and fish tissue samples and preliminary environmental risk assessment of their presence in two rivers in northern Poland[J]. Science of the Total Environment, 2014, 493:1006-1013. [6] 凌军辉, 秦华江, 陆华东. 长江流域抗生素污染调查[J]. 瞭望, 2020(17):50-51. LLING J H, QIN H J, LU H D. Investigation of antibiotic pollution in the Yangtze River basin[J].Outlook, 2020 (17):50-51(in Chinese).
[7] ASLAM B, WANG W, ARSHAD M I, et al. Antibiotic resistance:A rundown of a global crisis[J]. Infection and Drug Resistance, 2018, 11:1645-1658. [8] AYUKEKBONG J A, NTEMGWA M, ATABE A N. The threat of antimicrobial resistance in developing countries:Causes and control strategies[J]. Antimicrobial Resistance & Infection Control, 2017, 6:47. doi.org/10.1186/s13756-017-0208-x. [9] CUNHA C B, OPAL S M. Antibiotic stewardship:Strategies to minimize antibiotic resistance while maximizing antibiotic effectiveness[J]. Med Clin North Am, 2018, 102(5):831-843. [10] HUGHES D, KARLÉN A. Discovery and preclinical development of new antibiotics[J]. Upsala Journal of Medical Sciences, 2014, 119(2):162-169. [11] LAXMINARAYAN R, DUSE A, WATTAL C, et al. Antibiotic resistance-the need for global solutions[J]. The Lancet Infectious Diseases, 2013, 13(12):1057-1098. [12] BERGAMIN L T, NASCIMENTO S O, CAROLINE D A K, et al. Antibiotic combinations for controlling colistin-resistant Enterobacter cloacae[J]. The Journal of Antibiotics, 2017, 70(2):122-129. [13] COLEMAN K, LEVASSEUR P, GIRARD A M, et al. Activities of ceftazidime and avibactam against beta-lactamase-producing Enterobacteriaceae in a hollow-fiber pharmacodynamic model[J]. Antimicrob Agents Chemother, 2014, 58(6):3366-3372. [14] 杨蓉, 李娜, 饶凯锋, 等. 环境混合物的联合毒性研究方法[J]. 生态毒理学报, 2016, 11(1):1-13. YANG R, LI N, RAO K F, et al. Review on methodology for environmental mixture toxicity study[J]. Asian Journal of Ecotoxicology, 2016, 11(1):1-13(in Chinese).
[15] 孔令云, 田大勇, 石恬恬, 等. 混合化合物联合毒性研究进展[J]. 中国科技论文, 2014, 9(6):663-668. KONG L, TIAN D Y, SHI T T, et al. Research progress in toxicity of mixed compounds[J]. China Science Paper, 2014, 9(6):663-668(in Chinese).
[16] BACKHAUS T, SCHOLZE M, GRIMME L H. The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri[J]. Aquatic Toxicology, 2000, 49(1/2):49-61. [17] 曾鸣, 林志芬, 尹大强, 等. 混合污染物联合毒性研究进展[J]. 环境科学与技术, 2009, 32(2):80-86. ZENG M, LIN Z F, YIN D Q, et al. Progress on joint effect of mixture pollutants[J]. Enviornmental Science & Tcchnology, 2009, 32(2):80-86(in Chinese).
[18] LU L, WU Y, DING H, et al. The combined and second exposure effect of copper (Ⅱ) and chlortetracycline on fresh water algae, Chlorella pyrenoidosa and Microcystis aeruginosa[J]. Environ Toxicol Pharmacol, 2015, 40(1):140-148. [19] GONZÁLEZ-PLEITER M, GONZALO S, RODEA-PALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms:Implications for environmental risk assessment[J]. Water Research, 2013, 47(6):2050-2064. [20] MAGDALENO A, SAENZ M E, JUáREZ A B, et al. Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata[J]. Ecotoxicology and Environmental Safety, 2015, 113:72-78. [21] WANG D, WU X, LIN Z, et al. A comparative study on the binary and ternary mixture toxicity of antibiotics towards three bacteria based on QSAR investigation[J]. Environmental Research, 2018, 162:127-134. [22] MUNCH C A, FLEMMING I, ANDERS B. Ecotoxicity of mixtures of antibiotics used in aquacultures[J]. Environmental Toxicology and Chemistry, 2006, 25(8):2208-2215. [23] WANG Z, CHEN Q, HU L, et al. Combined effects of binary antibiotic mixture on growth, microcystin production, and extracellular release of Microcystis aeruginosa:Application of response surface methodology[J]. Environmental Science and Pollution Research, 2018, 25(1):736-748. [24] GULKOWSKA A, LEUNG H W, SO M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Research, 2008, 42(1):395-403. [25] KUMMERER K. Antibiotics in the aquatic environment:A review-part I[J]. Chemosphere, 2009, 75(4):417-434. [26] WAMMER K H, KORTE A R, LUNDEEN R A, et al. Direct photochemistry of three fluoroquinolone antibacterials:Norfloxacin, ofloxacin, and enrofloxacin[J]. Water Research, 2013, 47(1):439-448. [27] 孟磊, 杨兵, 薛南冬. 氟喹诺酮类抗生素环境行为及其生态毒理研究进展[J]. 生态毒理学报, 2015, 10(2):76-88. MENG L, YANG B, XUE N D. A review on environmental behaviors and ecotoxicology of fluoroquinolone antibiotics[J].Asian Journal of Ecotoxicology, 2015, 10(2):76-88(in Chinese).
[28] 陈姗, 许凡, 张玮. 磺胺类抗生素污染现状及其环境行为的研究进展[J]. 环境化学, 2019, 38(7):1557-1569. CHEN S,XU F,ZHANG W,et al. Research progress in pollution situation and environmental behavior of Sulfonamides[J].Environmental Chemistry, 2019, 38(7):1557-1569(in Chinese).
[29] 宫晓双, 安婧, 张立娜, 等. 典型抗生素复合污染对小白菜生长发育的毒理效应[J]. 生态学杂志, 2019, 38(2):541-547. GONG X S, AN J, ZHANG L N, et al. Toxicological effects of combined pollution of typical antibiotics on the development of Chinese white cabbage(Brassica rapa) seedlings[J]. Chinese Journal of Ecology, 2019, 38(2):541-547(in Chinese).
[30] KHADRA A, PINELLI E, LACROIX M Z, et al. Assessment of the genotoxicity of quinolone and fluoroquinolones contaminated soil with the Vicia faba micronucleus test[J]. Ecotoxicology Environmental Safety, 2012, 76(2):187-192. [31] LONG X, WANG D, LIN Z, et al. The mixture toxicity of environmental contaminants containing sulfonamides and other antibiotics in Escherichia coli:Differences in both the special target proteins of individual chemicals and their effective combined concentration[J]. Chemosphere, 2016, 158:193-203. [32] 任皓, 王金荣, 陈行杰, 等. 应用发光细菌法检测饲用抗生素单一及联合毒性的研究[J]. 中国畜牧杂志, 2011, 47(21):49-53. REN H, WANG J R, CHEN X J, et al. Primary research on single and combined toxicity of antibiotics in feeds by luminescent bacteria[J]. Chinese Journal of Animal Science, 2011, 47(21):49-53(in Chinese).
[33] LI G, XIA X, ZHAO S, et al. The physiological and toxicological effects of antibiotics on an interspecies insect model[J]. Chemosphere, 2020, 248:126019. doi:10.1016/j.chemosphere.2020.126019. [34] WANG X, LIU S, GUO H. A nosocomial-pathogens-infections model with impulsive antibiotics treatment on multiple bacteria[J]. Applied Mathematics and Computation, 2017, 296:64-87. [35] 魏瑞成, 包红朵, 郑勤, 等. 粪源抗生素金霉素和喹乙醇在养殖水体中的残留及对锦鲤的生态毒理效应研究[J]. 农业环境科学学报, 2009, 28(9):1800-1805. WEI R C, BAO H D, ZHENG Q, et al. Chlortetracycline and olaquindox residues of manure-derived antibiotics in the aquatic water and their ecotoxicological effects on KoiCarp[J]. Journal of Agro-Environment Science, 2009, 28(9):1800-1805(in Chinese).
[36] 魏子艳. 土霉素、恩诺沙星、磺胺二甲嘧啶与铜单一及复合污染对土壤微生物的影响[D]. 泰安:山东农业大学, 2014. WEI Z Y. Single and joint toxicity of oxytetracycline, enrofloxacin, sulfadimidine and Cu on soil microorganism[D].Taian:Shandong Agriculture University, 2014(in Chinese). [37] 葛林科, 任红蕾, 鲁建江. 我国环境中新兴污染物抗生素及其抗性基因的分布特征[J]. 环境化学, 2015, 34(5):875-883. GE L K, REN H L, LU J J, et al. Occurrence of antibiotics and corresponding resistance genes in the environment of China[J]. Environmental Chemistry, 2015, 34(5):875-883(in Chinese).
[38] BOXALL A B A, JOHNSON P, SMITH E J, et al. Uptake of veterinary medicines from soils into plants[J]. Pubmed, 2006, 54(6):2288-2297. [39] MIGLIORE L, COZZOLINO S, FIORI M. Phytotoxicity to and uptake of enrofloxacin in crop plants[J]. Chemosphere, 2003, 52(7):1233-1244. [40] BAGUER A J, JENSEN J, KROGH P H. Effects of the antibiotics oxytetracycline and tylosin on soil fauna[J]. Chemosphere, 2000, 40(7):751-757. [41] GAO Y, SUN Z, SUN X, et al. Toxic effect of olaquindox antibiotic on Eisenia fetida[J]. European Journal of Soil Biology, 2007, 43(1):252-255. [42] LI Y, TANG H, HU Y, et al. Enrofloxacin at environmentally relevant concentrations enhances uptake and toxicity of cadmium in the earthworm Eisenia fetida in farm soils[J]. Journal of Hazardous Materials, 2016, 308:312-320. [43] KAY P, BLACKWELL P A, ALISTAIR B A B. Fate of veterinary antibiotics in a macroporous tile drained clay soil[J]. Environmental Toxicology and Chemistry, 2004, 23(5):1136-1144. [44] ANDREONI V, CAVALCA L, RAO M A, et al. Bacterial communities and enzyme activities of PAHs polluted soils[J]. Chemosphere, 2004, 57(5):401-412. [45] DANTAS G, SOMMER M O, OLUWASEGUN R D, et al. Bacteria subsisting on antibiotics[J]. Science, 2008, 320(5872):100-103. [46] TOTH J D, FENG Y, DOU Z. Veterinary antibiotics at environmentally relevant concentrations inhibit soil iron reduction and nitrification[J]. Soil Biology and Biochemistry, 2011, 43(12):2470-2472. [47] 王加龙, 刘坚真, 陈杖榴, 等. 恩诺沙星残留对土壤微生物功能的影响[J]. 生态学报, 2005,25(2):279-282. WANG J L, LIU J Z, CHEN Z L, et al. Effects of enrofloxacin residues on the functions of soil microbes[J]. Acta Ecologica Sinica, 2005,25(2):279-282(in Chinese).
[48] 王加龙, 刘坚真, 陈杖榴, 等. 恩诺沙星残留对土壤微生物数量及群落功能多样性的影响[J]. 应用与环境生物学报, 2005,11(1):86-89. WANG J L, LIU J Z, CHEN Z L, et al. Effects of enrofioxac in residue on number and commun ity function diversity of soil microbes[J]. Chinese Journal of Applied and Environmental Biology, 2005,11(1):86-89(in Chinese).
[49] GIRARDI C, GREVE J, LAMSHOFT M, et al. Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities[J]. Journal of Hazardous Materials, 2011, 198:22-30. [50] HUND-RINKE K, SIMON M, LUKOW T. Effects of tetracycline on the soil microflora:Function, diversity, resistance[J]. Journal of Soils & Sediments, 2004, 4(1):11-16. [51] HAMMESFAHR U, HEUER H, MANZKE B, et al. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils[J]. Soil Biology and Biochemistry, 2008, 40(7):1583-1591. [52] ZHANG Q, JIA A, WAN Y, et al. Occurrences of three classes of antibiotics in a natural river basin:Association with antibiotic-resistant Escherichia coli[J]. Environmental Science & Technology, 2014, 48(24):14317-14325. [53] CHALEW E T, HALDEN U R. Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban[J]. Journal of the American Water Resources Association, 2009, 45(1):4-13. [54] YANG L H, YING G G, SU H C, et al. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata[J]. Environmental Toxicology and Chemistry, 2008, 27(5):1201-1208. [55] QIAN H, PAN X, CHEN J, et al. Analyses of gene expression and physiological changes in Microcystis aeruginosa reveal the phytotoxicities of three environmental pollutants[J]. Ecotoxicology, 2012, 21(3):847-859. [56] QIAN H, LI J, PAN X, et al. Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa[J]. Environmental Toxicology, 2012, 27(4):229-237. [57] VICENTE M, MANUEL N C, MARIA L D, et al. Tolerance to stress combination in tomato plants:New insights in the protective role of melatonin[J]. Molecules, 2018, 23(3):535. [58] CHENG J, QIU H, CHANG Z, et al. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris[J]. SpringerPlus, 2016, 5(1):1290. [59] HAN J, ZHANG L, YANG S, et al. Detrimental effects of metronidazole on selected innate immunological indicators in common carp (Cyprinus carpio L.)[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(2):198-201. [60] SAGLAM N, YONAR M E. Effects of sulfamerazine on selected haematological and immunological parameters in rainbow trout (Onchorhynchus mykiss, Walbaum, 1792)[J]. Aquaculture Research, 2009, 40(4):395-404. [61] QIU W, LIU X, YANG F, et al. Single and joint toxic effects of four antibiotics on some metabolic pathways of zebrafish (Danio rerio) larvae[J]. Science of the Total Environment, 2020, 716:137062. https://doi.org/10.1016/j.scitotenv.2020.137062. [62] LIGUORO M D, FIORETTO B, POLTRONIERI C, et al. The toxicity of sulfamethazine to Daphnia magnaand its additivity to other veterinary sulfonamides and trimethoprim[J]. Chemosphere, 2009, 75(11):1519-1524. [63] LAVILLE N, AIT-AISSA S, GOMEZ E, et al. Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes[J]. Toxicology, 2004, 196(1/2):41-55. [64] YANG J F, YING G G, ZHAO J L, et al. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS[J]. The Science of the Total Environment, 2010, 408(16):3424-3432. [65] SILVA B F D, JELIC A, LóPEZ-SERNA R, et al. Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain[J]. Chemosphere, 2011, 85(8):1331-1339. [66] HALLING-SRENSEN B. Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents[J]. Archives of Environmental Contamination and Toxicology, 2001, 40(4):451-460. [67] MA D, HU Y, WANG J, et al. Effects of antibacterials use in aquaculture on biogeochemical processes in marine sediment[J]. The Science of the Total Environment, 2006, 367(1):273-277. [68] LUCÍA C K A, M S K. Effects of ciprofloxacin on salt marsh sediment microbial communities[J]. The ISME Journal, 2007, 1(7):585-595. [69] MIRAND C D, ZEMELMAN R. Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms[J]. Science of the Total Environment, 2002(1/3):207-218. [70] ZHANG J, LIU S S, ZHEN Y Y, et al. Time-dependent hormetic effects of 1-alkyl-3-methylimidazolium bromide on Vibrio qinghaiensis sp.-Q67:luminescence, redox reactants and antioxidases[J]. Chemosphere, 2013, 91(4):462-467. [71] 任红蕾, 张蓬, 李凯, 等. 水中氟喹诺酮类抗生素光降解过程中抑菌活性的变化[J]. 环境化学, 2014, 33(5):753-759. REN H L, ZHANG P, LI K, et al. Changes in antibacterial activity of fluoroquinolone antibiotics due to photodegradation[J]. Environmental Chaemistry, 2014,33(5):753-759(in Chinese).
[72] GE L, NA G, ZHANG S, et al. New insights into the aquatic photochemistry of fluoroquinolone antibiotics:Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes[J]. Science of the Total Environment, 2015,527/528(sep.15):12-17. [73] WANG D, NING Q, DONG J, et al. Predicting mixture toxicity and antibiotic resistance of fluoroquinolones and their photodegradation products in Escherichia coli[J]. Environmental Pollution, 2020, 262:114275. doi:10.1016/j.envpol.2020.114275. [74] WILLING B P, RUSSELL S L, FINLAY B B. Shifting the balance:Antibiotic effects on host-microbiota mutualism[J]. Nature Reviews. Microbiology, 2011, 9(4):233-243. [75] LOOFT T, JOHNSON T A, ALLEN H K, et al. In-feed antibiotic effects on the swine intestinal microbiome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5):1691-1696. [76] JIN Y, ZENG Z, WU Y, et al. Oral exposure of mice to carbendazim induces hepatic lipid metabolism disorder and gut microbiota dysbiosis[J]. Toxicological Sciences, 2015, 147(1):116-126. [77] PHOLPRAMOOL C, RUCHIRAWAT S, VERAWATNAPAKUL V, et al. Structural requirements of some sulphonamides that possess an antifertility activity in male rats[J]. Journal of Reproduction and Fertility, 1991, 92(1):169-178. [78] LAFFONT C M, ALVINERIE M, BOUSQUET-MÉLOU A, et al. Licking behaviour and environmental contamination arising from pour-on ivermectin for Cattle[J]. International Journal for Parasitology, 2002, 31(14):1687-1692.
计量
- 文章访问数: 2869
- HTML全文浏览数: 2869
- PDF下载数: 88
- 施引文献: 0