-
由于生物电化学系统(bioelectrochemical systems, BESs)能够在降解污染物的同时产生电能,因此是一种很有前途的固体废物和废水处理技术[1-3]。近年来,研究人员开始关注利用BESs对污水处理厂污泥进行处理[4-6],实现污泥稳定化和减量化,同时还可以在污泥中回收电能[7]。2004年,研究人员首次利用BESs技术进行污泥降解[8],并可达到较高的原位能源回收效率和污泥降解效率[9]。目前,BESs已经可以实现成分复杂的城市废水的处理[10]。然而,BESs对污泥有机质的利用效率和能源回收效率都较低,这一缺陷制约了其进一步应用。
污泥中有机物浓度高,组成复杂,主要包括蛋白质和碳水化合物两类物质[11],并存在大量的细胞结构。陈曦等[12]指出,在污泥生物能回收利用过程中,为了实现剩余污泥资源回收最大化,必须充分将污泥细胞内有机质释放出来,而细胞膜壁的刚性结构对实现这一目标提出了不小挑战。此外,上述两类物质水解速率缓慢,限制了其被微生物利用的效率[13]。因此,在对污泥进行微生物降解之前,通常进行污泥预处理,使其中的难降解物质转化为更易被微生物利用的形态[14-15]。
研究人员采用多种预处理方法来提高污泥在BESs中降解和能量回收的效能,如热处理[16]和碱处理[17]可以有效地提高可溶性化学需氧量(soluble chemical oxygen demand,SCOD)浓度,从而提升SMFC的功率输出;微波处理[18]能够显著提高SMFC的产电效率;超声处理[15]可以增强后续SMFC的产电能力,提高TCOD及VS降解效率。Wu等[19]研究发现,酸预处理(pH=3)和碱预处理(pH=10)分别使污泥中短链脂肪酸产量提高了15.3倍和12.5倍。陈汉龙等[20]研究表明,预处理pH值为9、10、11、12和13时,污泥中化学需氧量(chemical oxygen demand,COD)的溶出率分别为6.5%、18.0%、36.7%、65.5%和83.5%,表明强碱预处理有利于污泥中COD的溶出。同时,碱性预处理可以增加污泥的SCOD,从而显著提高污泥在BESs中的电能回收[18, 21];且污泥的可溶性随着氢氧化钠用量的增加和反应时间的延长而逐渐提高。
然而,酸碱预处理对单室微生物燃料电池(single-chamber MFC,SMFC)性能的影响尚未进行研究和比较。因此,本文比较了不同酸碱预处理对BESs性能和污泥降解的影响,其中包括电能回收、COD去除和挥发性脂肪酸积累方面的比较。
酸碱预处理对单室生物电化学系统中污泥降解和能量回收的影响
Effects of acid and alkaline pretreatments on sludge degradation and energy recovery in a single-chamber bioelectrochemical system
-
摘要: 本研究利用生物电化学系统(bioelectrochemical systems, BESs)强化污泥降解,同时从污泥中回收能量;并比较了酸碱预处理对污泥在单室微生物燃料电池(single-chamber microbial fuel cell, SMFC)中的降解和能量回收的影响。结果表明,酸碱预处理均能在不同程度上促进污泥的降解和系统对电能的回收。当污泥预处理pH =12时,SMFC具有最高的输出功率(493.73 mW·m−2)和TCOD去除率(48.85%)。酸碱预处理后都未观察到挥发性脂肪酸(volatile fatty acids,VFAs)的累积现象,说明酸碱预处理破坏的细胞结构,并未向VFAs的转化,仅仅是转化为利于微生物降解的成分。本研究的结果有助于BESs最佳酸碱预处理条件以及有机质转化机制的确定。Abstract: This study we have enhanced sludge degradation from sewage sludge using bioelectrochemical systems (BESs) and compared the effects of acid and alkaline pretreatments on sludge degradation and energy recovery in a single-chamber microbial fuel cell (SMFC). The results showed that both the acid and alkaline pretreatments promoted electricity generation and sludge reduction. The SMFC with sludge pretreated at pH of 12 exhibited the highest power output (493.73 mW·m−2)and total chemical oxygen demand (TCOD) removal rate(48.85%). The volatile fatty acids (VFAs) accumulation phenomenon after pretreatment was not observed in our experiment, which indicated that alkali/acid pretreatment just break biomass into soluble ingredients rather than VFAs. This study contributes to the determination of optimum treatment conditions of acid or alkaline pretreatment and mechanism of organic matters transformation in BESs.
-
Key words:
- sewage sludge /
- acid and alkaline pretreatment /
- microbial fuel cell
-
表 1 不同预处理条件下的污泥样本VS浓度
Table 1. VS concentration of the sludge sample after different pretreatment
反应器 Reactor 预处理后VS浓度/(g·L−1) VS after pretreatment S2 18.16 S4 20.33 S7 22.28 S10 17.79 S12 15.4 表 2 SMFC和传统污泥处理方式的比较[38]
Table 2. Comparison between SMFC and traditional sludge treatment
特点Characteristics 瓶颈Bottleneck 传统处理方式
(离心浓缩脱水+污泥发酵)1. 体积减少约四分之一,初步达成污泥减量目标
2. 厌氧/好氧发酵过程实现污泥杀菌消毒,降低微生物可利用有机物含量1. 处理过程须投加大量药品,且投加量须随污泥性质进行调整。
2. 处理过程需耗费大量电能
3. 好氧处理效率高,但处理过程种会产生臭气
4. 需修建较大场地进行堆放处理SMFC处理方式 体积减量可达到30%—40%,处理过程可有效降低可利用有机物(增加预处理可有效破坏原污泥细胞结构,从而达到杀菌消毒目的),同时进行能源回收。 1. 目前的SMFC能源回收率较低。
2. 预处理可以提高污泥处理效率,提高污泥可利用有机物含量 -
[1] LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environmental Science & Technology, 2004, 38(7): 2281-2285. [2] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: Methodology and technology [J]. Environmental Science & Technology, 2006, 40(17): 5181-5192. [3] YUAN H R, DENG L F, QIAN X, et al. Significant enhancement of electron transfer from shewanella oneidensis using a porous n-doped carbon cloth in a bioelectrochemical system [J]. Science of The Total Environment, 2019, 665: 882-889. doi: 10.1016/j.scitotenv.2019.02.082 [4] JIANG J Q, ZHAO Q L, ZHANG J N, et al. Electricity generation from bio-treatment of sewage sludge with microbial fuel cell [J]. Bioresource Technology, 2009, 100(23): 5808-5812. doi: 10.1016/j.biortech.2009.06.076 [5] KI D, PARAMESWARAN P, POPAT S C, et al. Maximizing coulombic recovery and solids reduction from primary sludge by controlling retention time and pH in a flat-plate microbial electrolysis cell [J]. Environmental Science-Water Research & Technology, 2017, 3(2): 333-339. [6] SONG Y C, FENG Q, AHN Y. Performance of the bio-electrochemical anaerobic digestion of sewage sludge at different hydraulic retention times [J]. Energy & Fuels, 2016, 30(1): 352-359. [7] CAI L, ZHANG H M, FENG Y J, et al. Sludge decrement and electricity generation of sludge microbial fuel cell enhanced by zero valent iron [J]. Journal of Cleaner Production, 2018b, 174: 35-41. doi: 10.1016/j.jclepro.2017.10.300 [8] DENTEL S K, STROGEN B, CHIU P. Direct generation of electricity from sludges and other liquid wastes [J]. Water Science And Technology, 2004, 50(9): 161-168. doi: 10.2166/wst.2004.0561 [9] KARTHIKEYAN R, SELVAM A, CHENG K Y, et al. Influence of ionic conductivity in bioelectricity production from saline domestic sewage sludge in microbial fuel cells [J]. Bioresource Technology, 2016, 200: 845-852. doi: 10.1016/j.biortech.2015.10.101 [10] RAHIMNEJAD M, ADHAMI A, DARVARI S, et al. Microbial fuel cell as new technology for bioelectricity generation: A review [J]. Alexandria Engineering Journal, 2015, 54(3): 745-756. doi: 10.1016/j.aej.2015.03.031 [11] WANG F, LU S, JI M. Components of released liquid from ultrasonic waste activated sludge disintegration [J]. Ultrasonics Sonochemistry, 2006, 13(4): 334-338. doi: 10.1016/j.ultsonch.2005.04.008 [12] 陈曦, 李金河, 聂英进, 等. 加温加碱预处理对污泥厌氧消化产气量影响研究 [J]. 天津建设科技, 2020, 30(5): 52-53. doi: 10.3969/j.issn.1008-3197.2020.05.017 CHEN X, LIN J H, NIE Y J, et al. Research on the influence of pretreatment with heat and alkali of gas production in sludge anaerobic digestion [J]. Tianjin Construction Science and Technology, 2020, 30(5): 52-53(in Chinese). doi: 10.3969/j.issn.1008-3197.2020.05.017
[13] ZHEN G Y, LU X Q, LI Y Y, et al. Influence of zero valent scrap iron (ZVSI) supply on methane production from waste activated sludge [J]. Chemical Engineering Journal, 2015, 263: 461-470. doi: 10.1016/j.cej.2014.11.003 [14] KIM D J. Pre-treatment technology of wastewater sludge for enhanced biogas production in anaerobic digestion [J]. Clean Technology, 2013, 19(4): 355-369. doi: 10.7464/ksct.2013.19.4.355 [15] KIM D J, YOUN Y. Characteristics of sludge hydrolysis by ultrasound and thermal pretreatment at low temperature [J]. Korean Journal of Chemical Engineering, 2011, 28(9): 1876-1881. doi: 10.1007/s11814-011-0055-z [16] XIAO B Y, YANG F, LIU J X. Enhancing simultaneous electricity production and reduction of sewage sludge in two-chamber MFC by aerobic sludge digestion and sludge pretreatments [J]. Journal of Hazardous Materials, 2011, 189(1/2): 444-449. [17] YUSOFF M Z M, HU A, FENG C, et al. Influence of pretreated activated sludge for electricity generation in microbial fuel cell application [J]. Bioresource Technology, 2013, 145: 90-96. doi: 10.1016/j.biortech.2013.03.003 [18] JIANG J Q, ZHAO Q L, WANG K, et al. Effect of ultrasonic and alkaline pretreatment on sludge degradation and electricity generation by microbial fuel cell [J]. Water Science and Technology, 2010, 61(11): 2915-2921. doi: 10.2166/wst.2010.192 [19] WU L, ZHANG C, HU H, et al. Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment [J]. Bioresource Technology, 2017, 240: 192-196. doi: 10.1016/j.biortech.2017.03.016 [20] 陈汉龙, 严媛媛, 何群彪. 酸碱法预处理低有机质污泥的效果研究及条件优化 [J]. 环境科学学报, 2013, 33(2): 458-463. CHEN H L, YAN Y Y, HE Q B, et al. Research on the effect and condition optimization of acid - base pretreatment of low organic sludge [J]. Tianjin Construction Science and Technology, 2013, 33(2): 458-463(in Chinese).
[21] OH S E, YOON J Y, GURUNG A, et al. Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells [J]. Bioresource Technology, 2014, 165: 21-26. doi: 10.1016/j.biortech.2014.03.018 [22] ZHEN G, LU X, LI Y Y, et al. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion [J]. Applied Energy, 2014, 128: 93-102. doi: 10.1016/j.apenergy.2014.04.062 [23] DONG H, YU H, WANG X. Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells [J]. Environmental Science & Technology, 2012, 46(23): 13009-13015. [24] MORRIS J M, JIN S, WANG J, et al. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells [J]. Electrochemistry Communications, 2007, 9(7): 1730-1734. doi: 10.1016/j.elecom.2007.03.028 [25] ZHANG P, QU Y P, LIU J, et al. A new design of activated carbon membrane air-cathode for wastewater treatment and energy recovery [J]. RSC Advances, 2016, 6(6): 4587-4592. doi: 10.1039/C5RA21892F [26] ZHANG P, LIU J, QU Y, et al. Enhanced performance of microbial fuel cell with a bacteria/multi-walled carbon nanotube hybrid biofilm [J]. Journal of Power Sources, 2017, 361: 318-325. doi: 10.1016/j.jpowsour.2017.06.069 [27] CUI R, JAHNG D. Enhanced methane production from anaerobic digestion of disintegrated and deproteinized excess sludge [J]. Biotechnology Letters, 2006, 28(8): 531-538. doi: 10.1007/s10529-006-0012-9 [28] XIAO B, LIU C, LIU J, et al. Evaluation of the microbial cell structure damages in alkaline pretreatment of waste activated sludge [J]. Bioresource Technology, 2015, 196: 109-115. doi: 10.1016/j.biortech.2015.07.056 [29] CHO H U, PARK S K, HA J H, et al. An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge recirculation [J]. Environment Management, 2013, 129: 274-282. [30] XIAO B, YANG F, LIU J J J O H M. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell [J]. Bioresource Technology, 2013a, 254: 57-63. [31] HE Z, HUANG Y, MANOHAR A K, et al. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell [J]. Bioelectrochemistry, 2008, 74(1): 78-82. doi: 10.1016/j.bioelechem.2008.07.007 [32] GE Z, ZHANG F, GRIMAUD J, et al. Long-term investigation of microbial fuel cells treating primary sludge or digested sludge [J]. Bioresource Technology, 2013, 136: 509-514. doi: 10.1016/j.biortech.2013.03.016 [33] ZHANG G, ZHAO Q, JIAO Y, et al. Efficient electricity generation from sewage sludge usingbiocathode microbial fuel cell [J]. Bioresource Technology, 2012, 46(1): 43-52. [34] ZAKARIA B S, LIN L, DHAR B R. Shift of biofilm and suspended bacterial communities with changes in zanode potential in a microbial electrolysis cell treating primary sludge [J]. Science of The Total Environment, 2019, 689: 691-699. doi: 10.1016/j.scitotenv.2019.06.519 [35] ZHANG L, HE X, ZHANG Z, et al. Evaluating the influences of ZnO engineering nanomaterials on VFA accumulation in sludge anaerobic digestion [J]. Biochemical Engineering Journal, 2017a, 125: 206-211. doi: 10.1016/j.bej.2017.05.008 [36] 武鹏崑, 李煜华, 许衍营, 等. 青岛市团岛污水处理厂工艺设计和运行总结 [J]. 青岛建筑工程学院学报, 2002(4): 64-66. WU P K, LI Y H, XU Y Y, et al. Process design and operation summary of Qingdao Tuandao sewage treatment plant [J]. Journal of Qingdao Institute of Architecture and Engineering, 2002(4): 64-66(in Chinese).
[37] 杨芳. 污泥微生物燃料电池产电性能及污泥减量化研究[D]. 武汉: 湖北大学, 2011. YANG F. Research on the electrical performance and sludge reduction of sludge microbial fuel cells[D]. Wuhan: Hubei university, 2011(in Chinese).
[38] 戴晓虎. 我国污泥处理处置现状及发展趋势 [J]. 科学, 2020, 72(6): 30-34, 4. DAI X H. Present situation and development trend of sludge treatment and disposal in China [J]. Science, 2020, 72(6): 30-34, 4(in Chinese).