铁循环微生物对环境中重金属的影响研究进展

钱子妍, 吴川, 何璇, 薛生国. 铁循环微生物对环境中重金属的影响研究进展[J]. 环境化学, 2021, (3): 834-850. doi: 10.7524/j.issn.0254-6108.2020050901
引用本文: 钱子妍, 吴川, 何璇, 薛生国. 铁循环微生物对环境中重金属的影响研究进展[J]. 环境化学, 2021, (3): 834-850. doi: 10.7524/j.issn.0254-6108.2020050901
QIAN Ziyan, WU Chuan, HE Xuan, XUE Shengguo. Study on the influence of iron redox cycling microorganisms on heavy metals in the environment[J]. Environmental Chemistry, 2021, (3): 834-850. doi: 10.7524/j.issn.0254-6108.2020050901
Citation: QIAN Ziyan, WU Chuan, HE Xuan, XUE Shengguo. Study on the influence of iron redox cycling microorganisms on heavy metals in the environment[J]. Environmental Chemistry, 2021, (3): 834-850. doi: 10.7524/j.issn.0254-6108.2020050901

铁循环微生物对环境中重金属的影响研究进展

    通讯作者: 吴川, E-mail: wuchuan@csu.edu.cn
  • 基金项目:

    国家自然科学基金(41771512)资助.

Study on the influence of iron redox cycling microorganisms on heavy metals in the environment

    Corresponding author: WU Chuan, wuchuan@csu.edu.cn
  • Fund Project: Supported by National Natural Science Foundation of China (41771512).
  • 摘要: 铁循环微生物包括铁氧化菌(Fe(Ⅱ)-oxidizing bacteria,FeOB)和铁还原菌(Fe(Ⅲ)-reducing bacteria,FeRB),在由它们介导Fe2+(Fe3+)氧化(还原)的过程中,往往也伴随着一系列重金属元素的迁移转化,对重金属在环境中的生物有效性和迁移性方面有重要作用.本文综述了环境中的铁循环微生物,针对铁循环微生物驱动重金属迁移转化的作用机制,分别从铁氧化菌氧化亚铁生成铁矿物对重金属的固定,铁还原菌介导铁矿物还原溶解及次生矿物生成,以及铁循环微生物代谢耦合重金属形态转化方面进行阐述;进一步通过研究实例综述了铁循环微生物对环境中砷、镉、铬、铜、铅等重金属的作用及修复潜力;未来的研究可关注特定微生物的成矿机制,生物成矿对重金属固定的调控,以及重金属复合污染场地的铁循环微生物修复应用等方面.本文以期为基于铁循环微生物的重金属污染修复提供理论指导和应用依据.
  • 加载中
  • [1] 周建军,周桔,冯仁国. 我国土壤重金属污染现状及治理战略[J]. 中国科学院院刊,2014,29(3):315-320.

    ZHOU J J, ZHOU J, FENG R G. The current situation of soil heavy metal pollution in China and its control strategy[J]. Bulletin of Chinese Academy of Sciences, 2014, 29(3):315-320(in Chinese).

    [2] CHEN W, ZHANG J, ZHANG X, et al. Investigation of heavy metal (Cu, Pb, Cd, and Cr) stabilization in river sediment by nano-zero-valent iron/activated carbon composite[J]. Environmental Science and Pollution Research, 2016, 23(2):1460-1470.
    [3] 林超峰,龚骏. 嗜中性微好氧铁氧化菌研究进展[J]. 生态学报,2012,32(18):5889-5899.

    LIN C F, GONG J. Recent progress in research on neutrophilic, microaerophilic iron(Ⅱ)-oxidizing bacteria[J]. Acta Ecologica Sinica, 2012, 32(18):5889-5899(in Chinese).

    [4] 张萌,郑平,季军远. 厌氧铁氧化菌研究进展[J]. 应用生态学报,2013,24(8):2377-2382.

    ZHANG M, ZHENG P, JI J Y. Research advances on anaerobic ferrous-oxidizing microorganisms[J]. Chinese Journal of Applied Ecology, 2013, 24(8):2377-2382(in Chinese).

    [5] EMERSON D, FLEMING E J, MCBETH J M. Iron-oxidizing bacteria:an environmental and genomic perspective[J]. Annual Review of Microbiology, 2010, 64(1):561-583.
    [6] KUCERA S, WOLFE R S. A selective enrichment method for Gallionella ferruginea[J]. Journal of Bacteriology, 1957, 74(3):344-349.
    [7] EMERSON D, MOYER C L. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH[J]. Applied & Environmental Microbiology, 1998, 63(12):4784-4792.
    [8] WIDDEL F, SCHNELL S, HEISING S, et al. Ferrous iron oxi-dation by anoxygenic phototrophic bacteria[J]. Nature, 1993, 362:834-835.
    [9] JIAO Y, KAPPLER A, CROAL L R, et al. Isolation and characterization of a genetically tractable photoautotrophic Fe(Ⅱ)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1[J]. Applied & Environmental Microbiology, 2005, 71(8):4487-4496.
    [10] POULAIN A J, NEWMAN D K. Rhodobacter capsulatus catalyzes light-dependent Fe(Ⅱ) oxidation under anaerobic conditions as a potential detoxification mechanism[J]. Applied & Environmental Microbiology, 2009, 75(21):6639-6646.
    [11] EHRENREICH A, WIDDEL F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic[J]. Applied & Environmental Microbiology, 1994, 60(12):427-483.
    [12] STRAUB K L, SCHONHUBER W A, BUCHHOLZCLEVEN B E E, et al. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling[J]. Geomicrobiology Journal, 2004, 21(6):371-378.
    [13] KAPPLER A, SCHINK B, NEWMAN D K. Fe(Ⅲ) mineral formation and cell encrustation by the nitrate-dependent Fe(Ⅱ)-oxidizer strain BoFeN1[J]. Geobiology, 2006, 3(4):235-245.
    [14] WEBER K A, HEDRICK D B, PEACOCK A D, et al. Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002[J]. Applied Microbiology & Biotechnology, 2009, 83(3):555-565.
    [15] ESTHER J, SUKLA L B, PRADHAN N, et al. Fe (Ⅲ) reduction strategies of dissimilatory iron reducing bacteria[J]. Korean Journal of Chemical Engineering, 2015, 32(1):1-14.
    [16] 罗海林,汤佳,周普雄,等. 异化铁还原诱导次生铁矿对土壤重金属形态转化的影响[J]. 生态学杂志,2018,37(6):1620-1627.

    LUO H L, TANG J, ZHOU P X, et al. Influence of secondary iron-oxide mineralization induced by dissimilatory iron reduction bacteria on fraction transformation of heavy metals in soil[J]. Chinese Journal of Ecology, 2018, 37(6):1620-1627(in Chinese).

    [17] LOVLEY D R, HOLMES D E, NEVIN K P. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction[J]. Advances in Microbial Physiology, 2004, 49(2):219.
    [18] CORNELL R M, SCHWERTMANN U. Surface chemistry and colloidal stability[M]. Wiley-VCH Verlag GmbH & Co. KGaA, 2003.
    [19] LU X X, HUANGFU X L, MA J. Removal of trace mercury(Ⅱ) from aqueous solution by in situ formed Mn-Fe (hydr) oxides[J]. Journal of Hazardous Materials, 2014, 280:71-78.
    [20] KAPPLER A. Geomicrobiological cycling of iron[J]. Reviews in Mineralogy and Geochemistry, 2005, 59(1):85-108.
    [21] IWAHORI K, WATANABE J, TANI Y, et al. Removal of heavy metal cations by biogenic magnetite nanoparticles produced in Fe(Ⅲ)-reducing microbial enrichment cultures[J]. Journal of Bioscience and Bioengineering, 2014, 117(3):333-335.
    [22] MAILLOT F, MORIN G, JUILLOT F, et al. Structure and reactivity of As(Ⅲ)-and As(Ⅴ)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoulès acid mine drainage, France:Comparison with biotic and abiotic model compounds and implications for As remediation[J]. Geochimica Et Cosmochimica Acta, 2013, 104:310-329.
    [23] ONA-NGUEMA G, MORIN G, JUILLOT F, et al. EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite[J]. Environmental Science & Technology, 2005, 39(23):9147-9155.
    [24] XIU W, YU X, GUO H, et al. Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(Ⅲ) minerals (Fh-Gt Bio-bi-minerals)[J]. Chemosphere, 2019, 225:755-764.
    [25] PEREZ J P H, FREEMAN H M, BROWN A P, et al. Direct visualization of arsenic binding on green rust sulfate[J]. Environmental Science & Technology, 2020, 54(6):3297-3305.
    [26] BECKER T, GORHAM N, SHIERS D W, et al. In situ imaging of Sulfobacillus thermosulfidooxidans on pyrite under conditions of variable pH using tapping mode atomic force microscopy[J]. Process Biochemistry, 2011, 46(4):966-976.
    [27] KUPKA D, LOVÁS M, ŠEPELÁK V. Deferrization of kaolinic sand by iron oxidizing and iron reducing bacteria[J]. Advanced Materials Research, 2007, 20/21:130-133.
    [28] LIAO Y, LIANG J, ZHOU L. Adsorptive removal of As(Ⅲ) by biogenic schwertmannite from simulated As-contaminated groundwater[J]. Chemosphere, 2011, 83(3):295-301.
    [29] MIOT J, BENZERARA K, OBST M, et al. Extracellular Iron Biomineralization by Photoautotrophic Iron-Oxidizing Bacteria[J]. Applied and Environmental Microbiology, 2009, 75(17):5586-5591.
    [30] CHAN C S, FAKRA S C, EDWARDS D C, et al. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides[J]. Geochimica Et Cosmochimica Acta, 2009, 73(13):3807-3818.
    [31] CHAN C S, DE STASIO G, WELCH S A, et al. Microbial polysaccharides template assembly of nanocrystal fibers[J]. Science, 2004, 303(5664):1656-1658.
    [32] 孙振亚,黄江波. 葡聚糖分子对氢氧化铁矿化结晶的调制作用[J]. 物理化学学报,2006,22(2):172-177.

    SUN Z Y, HUANG J B. Modulation of dextran molecules on the crystallization of ferric hydroxide[J]. Journal of Physical Chemistry, 2006, 22(2):172-177(in Chinese).

    [33] FRIERDICH A J, LUO Y, CATALANO J G. Trace element cycling through iron oxide minerals during redox-driven dynamic recrystallization[J]. Geology, 2011, 39(11):1083-1086.
    [34] OUYANG B, LU X, LIU H, et al. Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization[J]. Geochimica et Cosmochimica Acta, 2014, 124:54-71.
    [35] LATTA D E, BACHMAN J E, SCHERER M M. Fe electron transfer and atom exchange in goethite:Influence of Al-substitution and anion sorption[J]. Environmental Science & Technology, 2012, 46(19):10614-10623.
    [36] HANSEL C M, BENNER S G, FENDORF S. Competing Fe(Ⅱ)-induced mineralization pathways of ferrihydrite[J]. Environmental Science & Technology, 2005, 39(18):7147.
    [37] FRIERDICH A J, CATALANO J G. Controls on Fe(Ⅱ)-activated trace element release from goethite and hematite[J]. Environmental Science & Technology, 2012, 46(3):1519-1526.
    [38] SMEATON C M, WALSHE G E, FRYER B J, et al. Reductive dissolution of Tl(Ⅰ)-jarosite by Shewanella putrefaciens:Providing new insights into Tl(Ⅰ) biogeochemistry[J]. Environmental Science & Technology, 2012, 46(20):11086-11094.
    [39] JONES E J P, NADEAU T, VOYTEK M A, et al. Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals[J]. Journal of Geophysical Research, 2006, 111(G1):G01012.
    [40] ROSSO K M, YANINA S V, GORSKI C A, et al. Connecting observations of hematite (alpha-Fe2O3) growth catalyzed by Fe(Ⅱ)[J]. Environmental Science & Technology, 2010, 44(1):61-67.
    [41] HANDLER R M, BEARD B L, JOHNSON C M, et al. Atom exchange between aqueous Fe(Ⅱ) and goethite:An Fe isotope tracer study[J]. Environmental Science & Technology, 2009, 43(4):1102-1107.
    [42] LIU C, LI F, CHEN M, et al. Adsorption and stabilization of lead during Fe(Ⅱ)-catalyzed phase transformation of ferrihydrite[J]. Acta Chimica Sinica, 2017, 75(6):621.
    [43] DUTRIZAC J E, JAMBOR J L. The behaviour of arsenic during Jarosite precipitation:Arsenic precipitation at 97℃ from sulphate or chloride media[J]. Canadian Metallurgical Quarterly, 2014, 26(2):91-101.
    [44] JAMES J D, TOLEK T, TOHRU A, et al. Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy[J]. Environmental Science & Technology, 2006, 40(5):1556-1565.
    [45] CHEN C, KUKKADAPU R K, LAZAREVA O, et al. Solid-phase Fe speciation along the vertical redox gradients in floodplains using XAS and Mössbauer spectroscopies[J]. Environmental Science & Technology, 2017, 51(14):7903-7912.
    [46] AEPPLI M, KAEGI R, KRETZSCHMAR R, et al. Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite[J]. Environmental Science & Technology, 2019, 53(7):3568-3578.
    [47] HANSEL C M, BENNER S G, NEISS J, et al. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow[J]. Geochimica Et Cosmochimica Acta, 2003, 67(16):2977-2992.
    [48] 张蕊,陆现彩,刘欢,等. Shewanella oneidensis MR-1还原铁帽过程中的矿物相转变和重金属的释放[J]. 矿物岩石地球化学通报,2015, 34(2):316-322.

    ZHANG R, LU X C, LIU H, et al. Phase transition of minerals and release of heavy metals in the reduction process of iron cap by Shewanella oneidensis MR-1[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2):316-322(in Chinese).

    [49] AHEMAD M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria:Paradigms and prospects[J]. Arabian Journal of Chemistry, 2019, 12(7):1365-1377.
    [50] LEE S, ROH Y, KOH D C. Oxidation and reduction of redox-sensitive elements in the presence of humic substances in subsurface environments:A review[J]. Chemosphere, 2019, 220:86-97.
    [51] LIU S V, ZHOU J, ZHANG C, et al. Thermophilic Fe(Ⅲ)-reducing bacteria from the deep subsurface:The evolutionary implications[J]. Science, 1997, 277(5329):1106-1109.
    [52] ROH Y, GAO H, VALI H, et al. Metal reduction and iron biomineralization by a psychrotolerant Fe(Ⅲ)-reducing bacterium, Shewanella sp. strain PV-4[J]. Applied & Environmental Microbiology, 2006, 72(5):3236.
    [53] VEERAMANI H, SCHEINOST A C, MONSEGUE N, et al. Abiotic reductive immobilization of U(Ⅵ) by biogenic mackinawite[J]. Environmental Science & Technology, 2013, 47(5):2361-2369.
    [54] WIELINGA B, MIZUBA M M, HANSEL C M, et al. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria[J]. Environmental Science & Technology, 2001, 35(3):522-527.
    [55] PENG L, LIU Y, GAO S H, et al. Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling[J]. Chemosphere, 2015, 139:334-339.
    [56] LAVERMAN A M, BLUM J S, SCHAEFER J K, et al. Growth of strain SES-3 with arsenate and other diverse electron acceptors[J]. Applied & Environmental Microbiology, 1995, 61(10):3556-3561.
    [57] CUMMINGS D E, CACCAVO F, FENDORF S, et al. Arsenic mobilization by the dissimilatory Fe(Ⅲ)-reducing bacterium Shewanella alga BrY[J]. Environmental Science & Technology, 1999, 33(5):723-729.
    [58] ISLAM F S, ANDREW G G, CHRISTOPHER B, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sedimentsents[J]. Nature, 2004, 430(6995):68-71.
    [59] HUQ M E, FAHAD S, SHAO Z, et al. Arsenic in a groundwater environment in Bangladesh:Occurrence and mobilization[J]. Journal of Environmental Management, 2020, 262:110318.
    [60] AMSTAETTER K, BORCH T, LARESE-CASANOVA P, et al. Redox transformation of arsenic by Fe(Ⅱ)-activated goethite (α-FeOOH)[J]. Environmental Science & Technology, 2010, 44(1):102-108.
    [61] 汪明霞,王娟,司友斌. Shewanella oneidensis MR-1异化还原Fe(Ⅲ)介导的As(Ⅲ)氧化转化[J]. 中国环境科学,2014,34(9):2368-2373.

    WANG M X, WANG J, SI Y B. Shewanella oneidensis MR-1 dissimilation reduction Fe(Ⅲ)-mediated As(Ⅲ) oxidation and transformation[J]. China Environmental Science, 2014, 34(9):2368-2373(in Chinese).

    [62] XIU W, GUO H, LIU Q, et al. Arsenic removal and transformation by Pseudomonas sp. strain GE-1-induced ferrihydrite:Co-precipitation versus adsorption[J]. Water, Air, & Soil Pollution, 2015, 226(6):167.
    [63] ZHAO Z, JIA Y, XU L, et al. Adsorption and heterogeneous oxidation of As(Ⅲ) on ferrihydrite[J]. Water Research, 2011, 45(19):6496-6504.
    [64] OKIBE N, KOGA M, SASAKI K, et al. Simultaneous oxidation and immobilization of arsenite from refinery waste water by thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi[J]. Minerals Engineering, 2013, 48:126-134.
    [65] 司友斌,孙林,王卉. Shewanella oneidensis MR-1对针铁矿的还原与汞的生物甲基化[J]. 环境科学,2015,36(6):2252-2258.

    SI Y B, SUN L, WANG H. Reduction of goethite and biomethylation of mercury by Shewanella oneidensis MR-1[J]. Environmental Science, 2015, 36(6):2252-2258(in Chinese).

    [66] SI Y, ZOU Y, LIU X, et al. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria[J]. Chemosphere, 2015, 122:206-212.
    [67] KERIN E J, GILMOUR C C, RODEN E, et al. Mercury methylation by dissimilatory Iron-reducing bacteria[J]. Applied and Environmental Microbiology, 2006, 72(12):7919-7921.
    [68] KATSOYIANNIS I A, ZOUBOULIS A I. Application of biological processes for the removal of arsenic from groundwaters[J]. Water Research, 2004, 38(1):17-26.
    [69] HOHMANN C, WINKLER E, MORIN G, et al. Anaerobic Fe(Ⅱ)-oxidizing bacteria show as resistance and immobilize As during Fe(Ⅲ) mineral precipitation[J]. Environmental Science & Technology, 2010, 44(1):94-101.
    [70] XIU W, GUO H, SHEN J, et al. Stimulation of Fe(Ⅱ) oxidation, biogenic lepidocrocite formation, and arsenic immobilization by Pseudogulbenkiania sp. strain 2002[J]. Environmental Science & Technology, 2016, 50(12):6449-6458.
    [71] TUFANO K J, FENDORF S. Confounding impacts of iron reduction on arsenic retention[J]. Environmental Science & Technology, 2008, 42(13):4777-4783.
    [72] KOCAR B D, HERBEL M J, TUFANO K J, et al. Contrasting effects of dissimilatory iron(Ⅲ) and arsenic(Ⅴ) reduction on arsenic retention and transport[J]. Environmental Science & Technology, 2006, 40(21):6715-6721.
    [73] BENNETT W W, TEASDALE P R, PANTHER J G, et al. Investigating arsenic speciation and mobilization in sediments with DGT and DET:A mesocosm evaluation of oxic-anoxic transitions[J]. Environmental Science & Technology, 2012, 46(7):3981-3989.
    [74] WANG Y, LIU X, SI Y, et al. Release and transformation of arsenic from As-bearing iron minerals by Fe-reducing bacteria[J]. Chemical Engineering Journal, 2016, 295:29-38.
    [75] FAROOQ S H, CHANDRASEKHARAM D, BERNER Z, et al. Influence of traditional agricultural practices on mobilization of arsenic from sediments to groundwater in Bengal delta[J]. Water Research, 2010, 44(19):5575-5588.
    [76] WANG X, CHEN X, YANG J, et al. Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil[J]. Journal of Environmental Sciences, 2009, 21(11):1562-1568.
    [77] PEDERSEN H D, POSTMA D, JAKOBSEN R. Release of arsenic associated with the reduction and transformation of iron oxides[J]. Geochimica et Cosmochimica Act, 2006, 70(16):4116-4129.
    [78] WANG Y, MORIN G, ONA-NGUEMA G, et al. Arsenic(Ⅲ) and arsenic(Ⅴ) speciation during transformation of lepidocrocite to magnetite[J]. Environmental Science & Technology, 2014, 48(24):14282-14290.
    [79] DONG M F, FENG R W, WANG R G, et al. Inoculation of Fe/Mn-oxidizing bacteria enhances Fe/Mn plaque formation and reduces Cd and As accumulation in rice plant tissues[J]. Plant and Soil, 2016, 404(1/2):75-83.
    [80] LI C, YI X, DANG Z, et al. Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by Shewanella oneidensis MR-1[J]. Chemosphere, 2016, 144:2065-2072.
    [81] YUAN C, LIU T, LI F, et al. Microbial iron reduction as a method for immobilization of a low concentration of dissolved cadmium[J]. Journal of Environmental Management, 2018, 217:747-753.
    [82] MUEHE E M, OBST M, HITCHCOCK A, et al. Fate of Cd during microbial Fe(Ⅲ) mineral reduction by a novel and Cd-tolerant Geobacter species[J]. Environmental Science & Technology, 2013, 47(24):14099-14109.
    [83] MARTINEZ R E, PEDERSEN K, FERRIS F G. Cadmium complexation by bacteriogenic iron oxides from a subterranean environment[J]. Journal of Colloid and Interface Science, 2004, 275(1):82-89.
    [84] MOHAMED A, YU L, FANG Y, et al. Iron mineral-humic acid complex enhanced Cr(Ⅵ) reduction by Shewanella oneidensis MR-1[J]. Chemosphere, 2020, 247:125902.
    [85] CUMMINGS D E, FENDORF S, SINGH N, et al. Reduction of Cr(Ⅵ) under acidic conditions by the facultative Fe(Ⅲ)-reducing bacterium acidiphilium cryptum[J]. Environmental Science & Technology, 2007, 41(1):146-152.
    [86] MASAKI Y, HIRAJIMA T, SASAKI K, et al. Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(Ⅲ)-reducing bacterium Acidocella aromatica strain PFBC[J]. Extremophiles, 2015, 19(2):495-503.
    [87] FINNERAN K T, ANDERSON R T, NEⅥN K P, et al. Potential for bioremediation of uranium-contaminated aquifers with microbial U(Ⅵ) reduction[J]. Journal of Soil Contamination, 2002, 11(3):339-357.
    [88] ANDERSON R T, VRIONIS H A, ORTIZBERNAD I, et al. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer[J]. Applied Microbiology & Biotechnology, 2003, 69(10):5884-5891.
    [89] WILLIAMS K H, BARGAR J R, LLOYD J R, et al. Bioremediation of uranium-contaminated groundwater:a systems approach to subsurface biogeochemistry[J]. Current Opinion in Biotechnology, 2013, 24(3):489-497.
    [90] CHANG H, BUETTNER S W, SEAMAN J C, et al. Uranium immobilization in an iron-rich rhizosphere of a native wetland plant from the Savannah river site under reducing conditions[J]. Environmental Science & Technology, 2014, 48(16):9270-9278.
    [91] LAKANIEMI A, DOUGLAS G B, KAKSONEN A H. Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments[J]. Journal of Hazardous Materials, 2019, 371, 198-212.
    [92] BEHRENDS T, VAN CAPPELLEN P. Competition between enzymatic and abiotic reduction of uranium(Ⅵ) under iron reducing conditions[J]. Chemical Geology, 2005, 220(3):315-327.
    [93] WIATROWSKI H A, WARD P M, BARKAY T. Novel reduction of mercury(Ⅱ) by mercury-sensitive dissimilatory metal reducing bacteria[J]. Environmental Science & Technology, 2006, 40(21):6690-6696.
    [94] LU X, LIU Y, JOHS A, et al. Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem[J]. Environmental Science & Technology, 2016, 50(8):4366-4373.
    [95] SMEATON C M, FRYER B J, WEISENER C G. Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite[J]. Environmental Science & Technology, 2009, 43(21):8086-8091.
    [96] TAO L, ZHU Z, LI F, et al. Fe(Ⅱ)/Cu(Ⅱ) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions[J]. Chemosphere, 2017, 187:43-51.
    [97] SUGIO T, FUJⅡ M, TAKEUCHI F, et al. Volatilization of mercury by an iron oxidation enzyme system in a highly mercury-resistant Acidithiobacillus ferrooxidans strain MON-1[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(7):1537-1544.
    [98] XIANG L, CHAN L C, WONG J W C. Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria[J]. Chemosphere, 2000, 41(1/2):283-287.
    [99] LACK J G, CHAUDHURI S K, KELLY S D, et al. Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(Ⅱ)[J]. Applied Microbiology & Biotechnology, 2002, 68(6):2704-2710.
    [100] FABISCH M, BEULIG F, AKOB D M, et al. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations[J]. Frontiers in Microbiology, 2013, 4:390.
    [101] FABISCH M, FREYER G, JOHNSON C A, et al. Dominance of ‘Gallionella capsiferriformans’ and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge[J]. Geobiology, 2015, 14(1):331-340.
    [102] SALAS E C, BERELSON W M, HAMMOND D E, et al. The impact of bacterial strain on the products of dissimilatory iron reduction[J]. Geochimica Et Cosmochimica Acta, 2010, 74(2):574-583.
    [103] BURTON E D, HOCKMANN K, KARIMIAN N, et al. Antimony mobility in reducing environments:The effect of microbial iron(Ⅲ)-reduction and associated secondary mineralization[J]. Geochimica et Cosmochimica Acta, 2019, 245:278-289.
    [104] BAE S, LEE W. Biotransformation of lepidocrocite in the presence of quinones and flavins[J]. Geochimica Et Cosmochimica Acta, 2013, 114:144-155.
    [105] O'LOUCHLIN E J, GORSKI C A, SCHERER M M, et al. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (γ-FeOOH) and the formation of secondary mineralization products[J]. Environmental Science & Technology, 2010, 44(12):4570-4576.
    [106] SHENG A, LI X, ARAI Y, et al. Citrate controls Fe(Ⅱ)-catalyzed transformation of ferrihydrite by complexation of the labile Fe(Ⅲ) intermediate[J]. Environmental Science & Technology, 2020, 54(12):7309-7319.
    [107] LIU C X, GORBY Y A, ZACHARA J M, et al. Reduction kinetics of Fe(Ⅲ), Co(Ⅲ), U(Ⅵ), Cr(Ⅵ), and Tc(Ⅶ) in cultures of dissimilatory metal-reducing bacteria[J]. Biotechnology and Bioengineering, 2002, 80(6):637-649.
  • 加载中
计量
  • 文章访问数:  4908
  • HTML全文浏览数:  4908
  • PDF下载数:  239
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-09

铁循环微生物对环境中重金属的影响研究进展

基金项目:

国家自然科学基金(41771512)资助.

摘要: 铁循环微生物包括铁氧化菌(Fe(Ⅱ)-oxidizing bacteria,FeOB)和铁还原菌(Fe(Ⅲ)-reducing bacteria,FeRB),在由它们介导Fe2+(Fe3+)氧化(还原)的过程中,往往也伴随着一系列重金属元素的迁移转化,对重金属在环境中的生物有效性和迁移性方面有重要作用.本文综述了环境中的铁循环微生物,针对铁循环微生物驱动重金属迁移转化的作用机制,分别从铁氧化菌氧化亚铁生成铁矿物对重金属的固定,铁还原菌介导铁矿物还原溶解及次生矿物生成,以及铁循环微生物代谢耦合重金属形态转化方面进行阐述;进一步通过研究实例综述了铁循环微生物对环境中砷、镉、铬、铜、铅等重金属的作用及修复潜力;未来的研究可关注特定微生物的成矿机制,生物成矿对重金属固定的调控,以及重金属复合污染场地的铁循环微生物修复应用等方面.本文以期为基于铁循环微生物的重金属污染修复提供理论指导和应用依据.

English Abstract

参考文献 (107)

目录

/

返回文章
返回