-
三维氧化石墨烯(3D-GO)是在氧化石墨烯的基础上,通过水热自组装方法合成的具有高孔隙密度、比表面积大、导电性能强等优异性能的新型材料[1]。基于这些优异性能,3D-GO在许多领域得到了广泛地应用,如扩充电池电容[2]、药物缓控释放[3]和环境污染修复等[4]。尤其值得关注的是,3D-GO的高比表面积和孔隙密度使其对多种类型的污染物,如重金属、酚类[5]等均表现出优良的吸附能力。有研究发现游离金属离子在高pH下可以通过中和负电荷促进碳纳米管对邻氯苯甲酸的吸附[6];还有研究发现在石墨烯-碳纳米管三维材料合成过程中添加Fe2+可以促进对铅的吸附[7]。然而,金属离子嫁接在3D-GO上对有机污染物吸附的影响还未见报道。
染料废水因具有色度深、有机污染物含量高、组分复杂、生物毒性大、难生物降解等特点,研究处理染料废水成为当今环保领域的热点和难点[8-9],甲基橙(MO)是一种难降解的偶氮类-阴离子型染料,具有致突变和致癌性,危害水生生物和人体健康[10]。
本研究选取不同电荷的金属阳离子(Ag+、Ca2+),通过水热合成嫁接于3D-GO上。选取甲基橙(MO)作为模型有机污染物,系统探究金属离子嫁接对3D-GO吸附MO的影响机理。
金属离子嫁接三维氧化石墨烯对甲基橙吸附的影响
Research on the adsorption of methyl orange by metal ion grafted on three-dimensional graphene oxide
-
摘要: 本研究利用扫描电子显微镜、比表面积分析仪、傅立叶红外光谱和Zeta电位分析仪对水热合成的三维氧化石墨烯材料进行表征,探究了金属离子(Ag+、Ca2+)嫁接对三维氧化石墨烯表面特征及甲基橙吸附特性的影响。结果表明,金属阳离子嫁接会造成三维氧化石墨烯表面孔结构破碎或坍塌,从而使材料比表面积下降。红外光谱显示金属嫁接导致三维氧化石墨烯羟基官能团减少,表现为表面负电荷的减少和氧元素含量的降低。吸附实验以及点位能量分布计算则显示,虽然金属阳离子嫁接后的材料对甲基橙的吸附量降低,但单位表面积上的吸附量则有所提高。说明金属嫁接一方面令三维石墨烯孔隙结构坍缩,比表面积下降造成吸附降低,另一方面则引入了新的吸附位点,金属尤其是多价金属产生的架桥作用对甲基橙在碳材料表面的吸附促进不可忽视。Abstract: In this paper, scanning electron microscopy (SEM), specific surface area analyzer, Fourier transform infrared spectroscopy (FTIR) and zeta potential analyzer were used to analyse the effects of metal ions (Ag+, Ca2+) grafted on the surface of three-dimensional graphene oxide materials, which are synthesized by thermal hydration method. The results show that the surface pore structure of three-dimensional graphene oxide was broken or collapsed by metal cation grafting, which led to the decrease of specific surface area. The infrared spectra showed that the hydroxyl groups of three-dimensional graphene oxide decreased due to metal grafting, such can be tested by the decrease of surface negative charge and the decrease of oxygen content. The adsorption experiments and the calculation of site energy distribution showed that although the adsorption capacity of the grafted materials decreased, the adsorption capacity of per unit surface area increased. The results show that metal grafting makes the pore structure of 3D graphene collapse, and the specific surface area decreases, resulting in the decrease of adsorption on the one hand. While on the other hand, new adsorption sites are introduced. The bridging effect of metals, especially the multivalent metals, can not be ignored in promoting the adsorption of methyl orange on the surface of carbon materials.
-
Key words:
- thermal hydration /
- carbon based nanomaterials /
- metal ion /
- dyes
-
图 4 两种pH下2D-GO(●)、3D-GO(○)、5%-Ag(▼)、7%-Ag(△)、5%-Ca (■)、7%-Ca(□)的Langmuir(-----)和Freundlich(·····)模型吸附等温线模型拟合图
Figure 4. Fitting the adsorption equilibrium results for materials 2D-GO(●)、3D-GO(○)、5%-Ag(▼)、7%-Ag(△)、5%-Ca (■)、7%-Ca(□) using Langmuir(-----) and Freundlich(·····) isotherm models in two pH
表 1 甲基橙的性质
Table 1. Properties of MO
名称
Name分子式
Formula分子量
Molecular masspKa 分子结构
Molecular structure甲基橙 C14H14N3NaO3S 327.33 3.4 表 2 不同材料的比表面积和孔体积数据
Table 2. The value of materials’ specific surface area and pore volume
材料
Materials比表面积/(m2 ·g−1)
Surface area孔体积/(dm3 ·g−1)
Pore volume2D-GO 2.3 7.4 3D-GO 282.9 707.9 Ag-5% 224.9 438.3 Ag-7% 245.2 630.6 Ca-5% 143.9 479.8 Ca-7% 71.7 291.8 表 3 不同材料的元素含量(% wt)
Table 3. Element content of different materials(% wt)
材料Materials C N H O 金属Metal 3D-GO 77 0.0 0.8 22.2 0 Ag-5% 78 0.1 0.9 20.4 0.6 Ag-7% 75 0.1 1.0 21.6 2.3 Ca-5% 79 0.4 1.1 18.8 0.7 Ca-7% 82 0.1 0.8 16.2 0.9 表 4 吸附等温线模型拟合参数
Table 4. Fitting parameters of adsorption isotherm model
Langmuir model Freundlich model KL Qm R2 KF n R2 2D-GO 0.09 313 0.9955 29 1.44 0.9866 3D-GO 0.23 413 0.998 78 1.69 0.9905 5%-Ag 0.18 442 0.9975 69 1.60 0.9886 pH=2 7%-Ag 0.22 401 0.9967 72 1.69 0.9871 5%-Ca 0.21 361 0.9706 62 1.59 0.9876 7%-Ca 0.08 548 0.9752 44 1.82 0.9982 2D-GO 0.04 188 0.9974 12 1.56 0.9925 3D-GO 0.10 224 0.9788 33 1.93 0.9958 5%-Ag 0.19 126 0.9836 26 2.17 0.9966 pH=5 7%-Ag 0.09 132 0.9978 15 1.73 0.9919 5%-Ca 0.06 142 0.9992 13 1.73 0.9965 7%-Ca 0.13 162 0.9969 28 2.19 0.987 -
[1] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902-907. doi: 10.1021/nl0731872 [2] GONCALVES G A B, PIRES S M G, SIMOES M M Q, et al. Three-dimensional graphene oxide: A promising green and sustainable catalyst for oxidation reactions at room temperature [J]. Chemical Communications, 2014, 50(57): 7673-7676. doi: 10.1039/C4CC02092H [3] FAN Z J, YAN J, ZHI L J, et al. A three‐dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors [J]. Advanced Materials, 2010, 22(33): 3723-3728. doi: 10.1002/adma.201001029 [4] SHI L, CHEN K, DU R, et al. Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil–water separation [J]. Journal of the American Chemical Society, 2016, 138(20): 6360-6363. doi: 10.1021/jacs.6b02262 [5] 张倩倩, 王三反. 氧化石墨烯基吸附剂吸附金属离子及有机污染物研究进展 [J]. 应用化工, 2020, 49(9): 2355-2363. doi: 10.3969/j.issn.1671-3206.2020.09.047 ZHANG Q Q, WANG S F. Research progress on adsorption of metal ions and organic pollutants by graphene-based adsorbents [J]. Applied Chemical Industry, 2020, 49(9): 2355-2363(in Chinese). doi: 10.3969/j.issn.1671-3206.2020.09.047
[6] 张迪, 尹基宇, 石林, 等. 阳离子对邻氯苯甲酸在碳纳米管上吸附影响机制研究 [J]. 昆明理工大学学报(自然科学版), 2019, 44(4): 110-116. ZHANG D, YIN J Y, SHI L, et al. Adsorption mechanism of o-chlorobenzoic acid affected by cation on carbon nanotubes [J]. Journal of Kunming University of Science and Technology (Natural Science), 2019, 44(4): 110-116(in Chinese).
[7] ZHANG M, Gao B, CAO X D, et al. Synthesis of a multifunctional graphene–carbon nanotube aerogel and its strong adsorption of lead from aqueous solution [J]. RSC Advances, 2013, 3(43): 21099-21105. doi: 10.1039/c3ra44340j [8] 姚时, 张鸣帅, 李林璇, 等. 茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理 [J]. 环境化学, 2018, 37(1): 96-107. doi: 10.7524/j.issn.0254-6108.2017050401 YAO S, ZHANG M S, LI L X, et al. Preparation of tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue from aqueous solution [J]. Environmental Chemistry, 2018, 37(1): 96-107(in Chinese). doi: 10.7524/j.issn.0254-6108.2017050401
[9] 龚娴, 杨陈凯, 马若男, 等. 三维花状层状双金属氢氧化物的制备及其对甲基橙的去除 [J]. 环境化学, 2019, 38(6): 1396-1402. doi: 10.7524/j.issn.0254-6108.2018080404 GONG X, YANG C K, MA R N, et al. Synthesis of 3D flower-like hierarchical layered double hydroxide microspheres and removal of methyl orange [J]. Environmental Chemistry, 2019, 38(6): 1396-1402(in Chinese). doi: 10.7524/j.issn.0254-6108.2018080404
[10] MALONEY J P, HALBOWER A C, FOUTY B F, et al. Systemic absorption of food dye in patients with sepsis [J]. New England Journal of Medicine, 2000, 343(14): 1047-1048. doi: 10.1056/NEJM200010053431416 [11] ZHAO D L, GAO X, WU C N, et al. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(VI) [J]. Applied Surface Science, 2016, 384: 1-9. doi: 10.1016/j.apsusc.2016.05.022 [12] JIN Z X, WANG X X, SUN Y B, et al. Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: A combined experimental and theoretical studies [J]. Environmental Science and Technology, 2015, 49(15): 9168-9175. doi: 10.1021/acs.est.5b02022 [13] 黄满华, 唐志红, 杨俊和. 氧化石墨烯结构的研究进展 [J]. 新型炭材料, 2019, 34(4): 307-314. HUANG M H, TANG Z H, YANG J H. Research progress on the structure of graphene oxide [J]. New Carbon Materials, 2019, 34(4): 307-314(in Chinese).
[14] GE H C, MA Z W. Microwave preparation of triethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI) [J]. Carbohydrate Polymers, 2015, 131: 280-287. doi: 10.1016/j.carbpol.2015.06.025 [15] 张光辉. 氧化石墨烯含氧官能团的催化性能和化学修饰[D]. 天津: 天津大学, 2015. ZHANG G H. The catalytic performance and chemical modification of oxygen groups on graphene oxide[D]. Tianjin: Tianjin University, 2015 (in Chinese).
[16] 孟晗. 氧化石墨烯复合材料的制备及其对铅离子的吸附性能研究[D]. 南京: 南京理工大学, 2017. MENG H. Study on the preparation of grapheme oxide composite and adsorption performance for Pb(Ⅱ) ions[D]. Nanjing: Nanjing University of Science and Technology, 2017 (in Chinese).
[17] JIANG X, MA Y W, LI J J, et al. Self-assembly of reduced graphene oxide into three-dimensional architecture by divalent ion linkage [J]. The Journal of Physical Chemistry C, 2010, 114(51): 22462-22465. doi: 10.1021/jp108081g [18] 王丽平, 黄柱成, 张明瑜. 化学气相沉积法改性ACFs及其去除溶液中甲基橙的应用 [J]. 中国有色金属学报(英文版), 2013, 23(2): 530-537. doi: 10.1016/S1003-6326(13)62495-4 WANG L P, HUANG Z C, ZHANG M Y. Modification of ACFs by chemical vapor deposition and its application for removal of methyl orange from aqueous solution [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(2): 530-537(in Chinese). doi: 10.1016/S1003-6326(13)62495-4
[19] 陈光才. 碳纳米管对污染物的吸附[M]. 北京: 化学工业出版社, 2013. CHEN G C. Adsorption of contaminants by carbon nanotubes[M]. Beijing: Chemical Industry Press, 2013 (in Chinese).
[20] LIU F F, WANG S G, FAN J L, et al. Adsorption of natural organic matter surrogates from aqueous solution by multiwalled carbon nanotubes [J]. The Journal of Physical Chemistry C, 2012, 116(49): 25783-25789. doi: 10.1021/jp307065e