-
大气气溶胶是指固体或液体微粒均匀分散在大气中并形成相对稳定的悬浮体系[1]。其中将细模态粒子定义为PM2.5(0<Dp<2.5 μm),粗模态粒子定义为PM2.5—10(2.5<Dp<10 μm)[2]。有研究指出,PM2.5的主要成分为硫酸盐、硝酸盐、铵盐和碳质气溶胶等[3]。在春季,东亚偶尔会遭遇来自塔克拉玛干或者戈壁的严重沙尘暴[4],东亚沙尘过程的最突出特征是矿物沙尘污染源紧邻着人口稠密或者污染严重的工业地区。由于直接吸收和凝结过程,沙尘气溶胶很容易沿着其传输路径与行星边界层中的人为污染物混合,形成所谓的污染沙尘[5]。有学者指出在东亚由于大量排放的一次污染物(NOx、SO2、CO、NMHCs、和人为沙尘)和大量能源消耗导致的二次形成的人为气溶胶(硝酸盐、硫酸盐、有机气溶胶等)造成了连续严重的雾霾污染事件[6-8]。在某些偶然情况下,人为污染物的远距离运输不仅会对东亚国家产生影响,甚至对北美西海岸的污染物浓度产生影响[9-10]。
近年来PM2.5的跨界运输问题已引起科学界及政府的极大关注,日本九州地区经常收到污染物的跨境传输,与日本其他地区(如关东地区)相比,PM2.5造成的影响更大[11].例如在福江岛(一个偏远的海洋站点32.7°N,128.68°E)上进行的模型模拟研究表明,中国华北中部地区(105°E—124°E,34S°N—42°N)是造成当地PM2.5环境负荷增加的主要原因,但夏季除外[12]。但是,Kaneyasu等[11]发现,虽然九州地区的福江岛和市区之间的硝酸盐和元素碳存在很大差异,但总体PM2.5浓度几乎相同。长期以来有报道称,日本的非海盐硫酸盐浓度主要受二次污染的轻度排放影响,这是由于亚洲大陆内部燃煤产生的大量二氧化硫排放所致[13]。在过去的几十年中,中国实施的脱硫行动降低了东亚对流层硫酸盐的浓度[14],但是,硝酸盐的传输问题仍然不清楚,尤其是在硝酸盐含量较高的大都市地区本地NOx排放物的形成无处不在。此外,NOx与SO2共存,导致SO2快速转化为硫酸盐,促进了次级颗粒的形成[15]。跨界运输的最新研究展示了2015年1月东亚地区的污染案例,运输过程中的对应离子(如NH3)和水相生成
${\rm{SO}}_4^{2-} $ 对气溶胶相硝酸盐的扩展能力有很大影响[9]。在海洋地区,HNO3倾向于与海洋中的盐(例如NaCl)发生反应生成NaNO3(水溶液)和气态HCl(g),生成的${\rm{NO}}_3^{-} $ 以粗模态的形式存在[16]。粗模态的沙尘粒子和细模态的人为污染物可以利用散射光的退偏比(depolarization ratio,DR)进行区分,因为散射光的偏振方向相同时,入射光为球形颗粒;但是对于非球形粒子,其散射光的偏振方向会发生改变。总的来说人为污染物的粒径小,形貌为球形,其退偏比较小;沙尘粒子的粒径较大,其形貌多为不规则形,退偏比大[17-19]。基于这项特性,有学者研制出偏振光学粒子计数器(polarization optical particle counter,POPC)用以测量每个粒子粒径的大小和退偏比信息,DR>0.2的为沙尘气溶胶,为非球形结构,DR<0.2的为海盐气溶胶及人为污染物,为球形结构[2, 20]。
为了进一步了解中国对日本跨境传输过程和日本本地污染源的排放特征,本文着重研究日本西部地区气溶胶中的硫酸盐,硝酸盐及黑碳的理化特征及影响因素,观测地点为九州大学应用力学研究所三楼楼顶。观测仪器为气溶胶化学成分在线监测仪(continuous dichotomous aerosol chemical speciation analyzer,ACSA-12)及偏振光学粒子计数器(polarization optical particle counter,POPC)[21]。
东亚城市地区春季气溶胶污染特征及退偏比特征变化分析
Characteristics of aerosol pollution and analysis of depolarization ratio characteristics at an urban site in East Asia in spring
-
摘要: 大气污染跨境传输过程和以及颗粒物理化特性的演变是东亚大气环境研究的热点之一。2014年春季,利用气溶胶化学成分在线监测仪(ACSA-12)及偏振光学粒子计数器(POPC)在日本西部福冈县进行观测研究,获取了大气中PM2.5、PM2.5—10、硝酸盐(PM2.5中硝酸盐称为细模态硝酸盐,fNO3;PM2.5—10中硝酸盐为粗模态硝酸盐,cNO3)、硫酸盐(fSO4、cSO4)、BC等成分的数据,分析结果表明,大气PM2.5三月日均浓度为(25.2±15.5 )μg·m−3,PM2.5—10浓度为(13.8±12.5) μg·m−3,fNO3浓度为(2.5±2.4 )μg·m−3,BC浓度为(0.79±0.52 )μg·m−3。该地区污染主要以细粒子为主,且大多数污染过程中1—3 μm粒子的退偏比值介于0.1至0.2,且粗模态粒子未表现明显的内部混合状态,说明没有经过长时间的混合作用,该地区春季污染过程主要受本地源影响。对比工作日休息日数据,休息日PM2.5浓度上升了26.0%,其中fNO3浓度上升了21%,fSO4浓度上升了37.5%,fWSOC上升了59.4%。PM2.5—10上升了20.6%,其中cSO4上升了48.6%,cNO3上升了12.5%,进一步说明了本地源对当地污染的影响。Abstract: Cross-boundary transportation process in East Asian was of particular interest in atmospheric sciences field., In the spring of 2014 a continuous dichotomous aerosol chemical speciation analyzer (ACSA-12) and polarized optical particle counter (POPC) were used to sample Fukuoka Prefecture in western Japan. Analysis of PM2.5, PM2.5—10, and nitrate (nitrate in PM2.5 is called fine-modal nitrate, fNO3; nitrate in PM2.5—10 is coarse-mode nitrate, cNO3), Sulfate (fSO4, cSO4), BC and other data were analyzed, Results showed that the average daily concentration of PM2.5 in Fukuoka, Japan in March was (25.2±15.5) μg·m−3, and the concentration of PM2.5—10 was (13.8±12.5) μg·m−3, fNO3 concentration was (2.5±2.4 )μg·m−3, BC concentration was (0.79±0.52) μg·m−3. Pollution in Fukuoka was mainly fine particles dominant,, and the depolarization ratio of 1—3 μm particles was between 0.1 and 0.2 in most pollution processes. The particles in the coarse mode were not fully mixed, indicating that anthropogenic pollutants had less impact during mixing process. The spring pollution process in Fukuoka was greatly affected by local sources. Comparing the data of weekdays and weekend days, the PM2.5 concentration on weekend days increased by 26.0%, among which the fNO3 concentration increased by 21%, the fSO4 concentration increased by 37.5%, and the fWSOC increased by 59.4%. PM2.5—10 increased by 20.6%, of which cSO4 increased by 48.6% and cNO3 increased by 12.5%, further explaining the impact of local sources on local pollution.
-
Key words:
- Aerosol particle /
- nitrate /
- sulfate /
- depolarization ratio /
- East Asia
-
-
[1] 徐宏辉, 王跃思, 温天雪, 等. 北京大气气溶胶中水溶性离子的粒径分布和垂直分布 [J]. 环境科学, 2007, 28(1): 14-19. doi: 10.3321/j.issn:0250-3301.2007.01.003 XU H H, WANG Y S, WEN T X, et al. Size distributions and vertical distributions of water soluble ions of atmospheric aerosol in Beijing [J]. Environmental Science, 2007, 28(1): 14-19(in Chinese). doi: 10.3321/j.issn:0250-3301.2007.01.003
[2] PAN X, UNO I, HARA Y, et al. Observation of the simultaneous transport of Asian mineral dust aerosols with anthropogenic pollutants using a POPC during a long-lasting dust event in late spring 2014 [J]. Geophysical Research Letters, 2015, 42(5): 1593-1598. doi: 10.1002/2014GL062491 [3] 耿彦红, 刘卫, 单健, 等. 上海市大气颗粒物中水溶性离子的粒径分布特征 [J]. 中国环境科学, 2010, 30(12): 1585-1589. GENG Y H, LIU W, SHAN J, et al. Characterization of major water-soluble ions in size-fractionated particulate matters in Shanghai [J]. China Environmental Science, 2010, 30(12): 1585-1589(in Chinese).
[4] UNO I, EGUCHI K, YUMIMOTO K, et al. Asian dust transported one full circuit around the globe [J]. Nature Geoscience, 2009, 2(8): 557-560. doi: 10.1038/ngeo583 [5] SEINFELD J H, G R CARMICHAEL, R ARIMOTO, et al. ACE-ASIA-Regional climatic and atmospheric chemical effects of Asian dust and pollution [J]. Bull Am Meteorol Soc, 2004, 85(3): 367-380. doi: 10.1175/BAMS-85-3-367 [6] LAWRENCE M G, LELIEVELD J. Atmospheric pollutant outflow from southern Asia: A review [J]. Atmos Chem Phys, 2010, 10: 11017-11096. doi: 10.5194/acp-10-11017-2010 [7] WANG Z, LI J, WANG Z, et al. Modeling study of regional severe hazes over mid-eastern China in January 2013 and its implications on pollution prevention and control [J]. Sci China Earth Sci, 2014, 57: 3-13. doi: 10.1007/s11430-013-4793-0 [8] LI J, DU H, WANG Z, et al. Rapid formation of a severe regional winter haze episode over a mega-city cluster on the North China Plain [J]. Environ Pollut, 2017, 223: 605-615. doi: 10.1016/j.envpol.2017.01.063 [9] ITAHASHI S, UNO I, OSADA K, et al. Nitrate transboundary heavy pollution over East Asia in winter [J]. Atmos Chem Phys, 2017, 17: 3823-3843. doi: 10.5194/acp-17-3823-2017 [10] ZHANG L, JACOB D J, BOERSMA K F, et al. Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations [J]. Atmos Chem Phys, 2008, 8: 6117-6136. doi: 10.5194/acp-8-6117-2008 [11] KANEYASU N, YAMAMOTO S, SATO K, et al. Impact of long-range transport of aerosols on the PM2.5 composition at a major metropolitan area in the northern Kyushu area of Japan [J]. Atmos Environ, 2014, 97: 416-425. doi: 10.1016/j.atmosenv.2014.01.029 [12] IKEDA K, YAMAJI K, KANAYA Y, et al. Sensitivity analysis of source regions to PM2.5 concentration at Fukue Island, Japan [J]. Air Waste Manag. Assoc, 2014, 64: 445-452. doi: 10.1080/10962247.2013.845618 [13] ITAHASHI S, UNO I, HAYAMI H, et al. Modeling investigation of controlling factors in the increasing ratio of nitrate to non-seasalt sulfate in precipitation over Japan [J]. Atmos Environ, 2014, 92: 171-177. doi: 10.1016/j.atmosenv.2014.04.022 [14] KUROKAWA J, OHARA T, MORIKAWA T, et al. Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2 [J]. Atmos Chem Phys, 2013, 13: 11019-11058. doi: 10.5194/acp-13-11019-2013 [15] HE H, WANG Y, MA Q, et al. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days [J]. Sci Rep, 2014, 4: 4172. doi: 10.1038/srep04172 [16] ITAHASHI S, HAYAMI H, UNO I, et al. Importance of coarsemode nitrate produced via sea salt as atmospheric input to East Asian oceans [J]. Geophys Res Lett, 2016, 43: 5483-5491. doi: 10.1002/2016GL068722 [17] SHIMIZU A, N SUGIMOTO, I MATSUI, et al. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia [J]. J Geophys Res, 2004, 109: D19S17. doi: 10.1029/2002JD003253 [18] WINKER D M, VAYGHAN M A, OMAR A, et al. Overview of the CALIPSO mission and CALIOP data processing algorithms [J]. J Atmos Oceanic Tech, 2009, 26(11): 2310-2323. doi: 10.1175/2009JTECHA1281.1 [19] SUGIMOTO N, HARA Y, SHIMIZU A, et al. Analysis of dust events in 2008 and 2009 using the lidar network, surface observations and the CFORS model, Asia-Pac [J]. J Atmos Sci, 2014, 49(1): 27-39. [20] KOBAYASHI H, HAYASHI M, SHIRAISHI K, et al. Development of a polarization optical particle counter capable of aerosol type classification [J]. Atmospheric Environment, 2014, 97: 486-492. doi: 10.1016/j.atmosenv.2014.05.006 [21] KIMOTO H, UEDA A, TSUJINOTO K, et al. Development of a continuous dichotomous aerosol chemical speciation analyzer [J]. Clean Technol, 2013, 23: 49-52. [22] PAN X, UNOI, HARA Y, et al. Polarization properties of aerosol particles over western Japan: classification, seasonal variation, and implications for air quality. Atmos Chem [J]. Phys, 2016, 16(15): 9863-9873. [23] UNO I, OSADA K, YUMIMOTO K, et al. Importance of long-range nitrate transport based on long-term observation and modeling of dust and pollutants over East Asia [J]. Aero Air Qual, Res, 2017, 17: 3052-3064. doi: 10.4209/aaqr.2016.11.0494 [24] PAN X, UNO I, WANG Z, et al. Seasonal variabilities in chemical compounds and acidity of aerosol particles at urban site in the west Pacific [J]. Environmental Pollution, 2018, 237: 868-877. doi: 10.1016/j.envpol.2017.11.089 [25] WANG Z, PAN X, UNO I, et al. Importance of mineral dust and anthropogenic pollutants mixing during a long-lasting high PM event over East Asia [J]. Environmental Pollution, 2018, 234: 368-378. doi: 10.1016/j.envpol.2017.11.068 [26] TIAN Y, PAN X, TOMOAKI N, et al. Variability of depolarization of aerosol particles in the megacity of Beijing: Implications for the interaction between anthropogenic pollutants and mineral dust particles [J]. Atmos Chem Phys, 2018, 18: 18203-18217. doi: 10.5194/acp-18-18203-2018 [27] CHAN C, XU X, LI Y, et al. Characteristics of vertical profiles and sources of PM2.5, PM10 and carbonaceous species in Beijing [J]. Atmospheric Environment, 2005, 39(28): 5113-5124. doi: 10.1016/j.atmosenv.2005.05.009 [28] PÉREZ J, PEY X, QUEROL,. et al Partitioning of major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe [J]. Atmospheric Environment, 2008, 42(8): 1677-1691. doi: 10.1016/j.atmosenv.2007.11.034 [29] CHAN C, YAO X. Air pollution in mega cities in China [J]. Atmospheric Environment, 2008, 42(1): 1-42. doi: 10.1016/j.atmosenv.2007.09.003 [30] AKYUZ, M, AND CABUK H. Meteorological variations of PM2.5 / PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey [J]. Journal of Hazardous Materials, 2009, 170(1): 13-21.