-
醛酮类化合物(carbonyls)是对流层大气中挥发性有机物(volatile organic compounds, VOC)的重要组分,是大气光化学反应的重要中间产物,在大气化学过程中扮演着非常重要的角色[1-2]。这类化合物是活性过氧自由基(ROx)的重要前体物[3],也是大气中有机酸、光化学氧化剂臭氧(O3)、过氧乙酰硝酸酯(PAN)以及二次有机气溶胶(secondary organic aerosol, SOA)的重要前驱物[4]。这些高活性强氧化剂可极大提升大气的氧化能力,加快大气中挥发性有机物降解以及气态SO2和NOx向颗粒态盐的转化[5- 6],对区域大气环境产生重要影响。此外,醛酮类化合物对人体健康存在着严重的潜在威胁[7-8],如甲醛具有强烈的刺激性、毒性和致癌性;乙醛和丙烯醛等被公认为是潜在的致癌物。大气中醛酮类化合物的来源主要包括自然源和人为源的一次源排放以及大气化学过程的二次生成[3]。其中一次自然源主要是森林大火、植物和动物等的直接释放,一次人为源主要来自燃烧、溶剂挥发和机动车尾气等的直接排放;二次生成则主要由自然源和人为源排放到大气中的挥发性有机化合物经光氧化作用生成[7, 9-14]。因此,对大气中醛酮类化合物的研究可为探究区域大气环境污染的成因以及制订有效治理措施等提供参考。
随着我国经济的高速发展,近几十年来化石燃料的大量使用引发了严重的区域性大气环境污染问题,如京津冀地区秋冬季的严重灰霾频发、春夏季臭氧(O3)污染水平的逐步抬升等。为了改善区域空气质量,京津冀地区实施了一系列防控措施,如散乱污治理、煤改气和煤改电、机动车限行以及错峰生产和限产停产等,空气质量整体有所改善,SO2和PM2.5浓度呈现出明显下降趋势,但大气臭氧(O3)浓度反而出现快速增长趋势[15]。醛酮类化合物作为大气臭氧以及活性ROx自由基的重要前驱物,其浓度水平、组成特征及光化学降解速率等都会影响到区域大气氧化性。已有研究发现,近年来北京城区大气中醛酮类化合物浓度水平整体呈现波动下降趋势[16-22]。北京郊区及其周边地区大气中醛酮类化合物的污染情况尚不清楚,仅有的2010年夏季短暂的对比观测结果显示,北京郊区及其周边地区大气中醛酮类化合物浓度明显低于北京城区[19]。北京市大兴区位于北京市南部郊区,地处京津冀三地交界处,位于京津冀地区大气污染物南北传输通道上,臭氧污染已成为非灰霾时段的主要大气污染问题。
本研究对大兴区大气中醛酮类化合物进行强化观测,获得了京津冀交界地区大气中醛酮类化合物的浓度水平、组成特征及其光化学降解速率等重要的基础信息,可为区域空气质量模型模拟研究提供重要的基础资料,对京津冀区域臭氧污染成因的深入探究以及防控措施的制订提供了重要参考。
北京市大兴区夏季大气中醛酮类化合物的污染水平、来源及影响
The pollution levels, sources and impact of atmospheric carbonyls in summer of Daxing District, Beijing
-
摘要: 本研究采用2, 4-二硝基苯肼(DNPH)涂敷硅胶柱于2018年8月至9月在北京市大兴区开展了为期32 d的大气醛酮类化合物样品采集,并利用高效液相色谱对采集样品中醛酮类化合物进行了定量分析。大兴区大气中共检测出10种醛酮类化合物,体积分数总平均值为(5.68±4.25)×10−9,其中甲醛、丙酮和乙醛的体积分数分别为(3.31±2.44)×10−9,(1.31±1.23)×10−9和(0.89±0.77)×10−9,占醛酮类化合物总体积分数的83.89%。醛酮类化合物与CO和NOx的平均浓度日变化趋势十分相似,均呈现夜晚高白天低的日变化特征,表明燃烧源和汽车尾气可能是大兴区大气醛酮类化合物的重要来源。分别以CO和O3作为一次和二次来源的示踪物,采用多元线性回归的分析方法对大气中醛酮类化合物进行了来源分析,结果表明:大兴区甲醛和乙醛主要来自一次来源,分别占其总来源的82.02%和74.45%,而一次来源对丙酮贡献仅为42.04%。基于光化学辐射通量测定,计算了甲醛、乙醛和丙酮的光解速率及其对过氧自由基的贡献,发现这三种主要醛酮化合物在污染天的光解速率以及过氧自由基的产生速率相对清洁天可提高3—5倍,从而促进了NO向NO2转化以及O3的形成。Abstract: Atmospheric carbonyl compounds (carbonyls) were sampled by using silica cartridges that were pre-coated with 2, 4-dinitrophenylhydrazine (DNPH) at a semi-urban site in Daxing district, Beijing, from August to September 2018. The carbonyls concentrations were quantified through measurements of hydrazones formed from the reactions of carbonyls with the DNPH by using a high-performance liquid chromatography (HPLC) equipped with UV detector. Ten carbonyls in the samples were identified and quantified with a total mean volume concentration of (5.68±4.25)×10−9. The mean volume concentrations of formaldehyde, acetaldehyde and acetone were (3.31±2.44)×10−9, (1.31±1.23)×10−9和(0.89±0.77)×10−9, respectively, accounting for 83.89% of the total mean volume concentration. The diurnal variation trends of formaldehyde, acetaldehyde and acetone with relatively high concentrations at night and minimal concentrations around noontime were very similar to those of CO and NOx, indicating that combustion source and automobile exhaust might be their important sources. The sources of the carbonyls were further quantitatively analyzed by using a multiple linear regression method with CO as the tracer of primary source and O3 as the secondary sources. The results showed that formaldehyde and acetaldehyde mainly came from the primary sources, accounting for 82.02% and 74.45% of the total sources, respectively, while the contribution of the primary sources to acetone was only 42.04%. The photolysis rates of formaldehyde, acetaldehyde and acetone as well as their contributions to peroxide free radicals were calculated based on the photochemical radiation flux measurement. The photolysis rates of the three main carbonyls and the production rates of the peroxide free radicals were found to increase by 3—5 times in polluted days in comparison with clean days, and thus the conversion rate of NO to NO2 would be greatly accelerated in pollution days to promote formation of O3.
-
Key words:
- carbonyls /
- Beijing /
- the photolysis rate /
- atmospheric oxidation /
- ozone formation potential (OFP)
-
表 1 醛酮类化合物的涂敷空白和现场空白 (μg·管-1)
Table 1. The coating and field blank samples of carbonyls(μg·cartridge-1)
空白样品
Blank samples甲醛
Formaldehyde乙醛
Acetaldehyde丙酮
Acetone丙醛
Propionaldehyde丁醛
ButyraldehydeUS EPA < 0.15 < 0.1 < 0.3 < 0.1 < 0.1 涂敷空白 第1批 0.0303±0.0002 0.0095±0.0004 第2批 0.0230±0.0030 0.0123±0.0012 第3批 0.0157±0.0004 第4批 0.0189±0.0006 0.0096±0.0000 第5批 0.0377±0.0182 0.0109±0.0022 0.0214±0.0000 现场空白 第1批 0.0430±0.0169 0.0683±0.0419 0.0284±0.0057 0.0152±0.0000 第2批 0.0193±0.0087 0.0521±0.0130 0.0244±0.0003 第3批 0.0208±0.0007 0.0183±0.0065 第4批 0.0359±0.0198 0.0469±0.0134 0.0321±0.0024 0.0299±0.0000 第5批 0.0341±0.0131 0.0422±0.0006 0.0394±0.0059 0.0170±0.0010 0.0328±0.0021 表 2 醛酮类化合物的名称及方法检出限
Table 2. The names and the method detection limits of carbonyls
中文名称 英文名称 英文名称缩写 最低检出限 (×10−9)
Minimum detection limit甲醛 Formaldehyde Form-A 0.0083 乙醛 Acetaldehyde Acet-A 0.0088 丙酮 Acetone Acetone 0.0108 丙醛 Propionaldehyde Propion-A 0.0109 丁醛 Butyraldehyde Butyr-A 0.0145 苯甲醛 Benzaldehyde Benz-A 0.0147 戊醛 Valeraldehyde Valer-A 0.0182 邻甲基苯甲醛 o-Tolualdehyde o-Tolu-A 0.0208 间甲基苯甲醛 m-Tolualdehyde m-Tolu-A 0.0208 己醛 Hexaldehyde Hex-A 0.0104 表 3 大兴区大气中醛酮类化合物的浓度 (×10−9)
Table 3. The concentration of carbonyls in the atmosphere in Daxing district
醛酮类化合物
Carbonyls最大浓度
Maximum concentration最小浓度
Minimum concentration平均浓度
Mean concentration占比/%
Proportion甲醛 11.31 0.07 3.31±2.44 50.40 乙醛 4.00 0.01 0.89±0.77 13.58 丙酮 4.67 0.02 1.31±1.23 19.91 丙醛 0.63 0.04 0.23±0.13 3.44 丁醛 1.35 0.04 0.40±0.29 6.04 苯甲醛 0.24 0.03 0.09±0.04 1.41 戊醛 0.35 0.04 0.12±0.07 1.81 邻、间甲基苯甲醛 0.49 0.03 0.15±0.10 2.22 己醛 0.30 0.03 0.10±0.05 1.59 总和 20.33 0.14 5.68±4.25 表 4 不同地区醛酮类化合物的浓度(×10−9)
Table 4. Concentration of carbonyls in different regions
地点
Location站点类型
Type采样时间
Period甲醛
Formaldehyde乙醛
Acetaldehyde丙酮
Acetone丙醛
Propionaldehyde丁醛
Butyraldehyde苯甲醛
Benzaldehyde戊醛
Valeraldehyde邻甲基苯甲醛
o-Tolualdehyde间甲基苯甲醛
m-Tolualdehyde己醛
Hexaldehyde参考文献
Reference北京 城市站 2004 20.72 8.40 —1) — — — — — — — [16] 2005.6—8 15.92 9.56 9.34 1.62 1.10 0.80 0.38 — — 0.40 [17] 2008.7—9 5.79 4.17 6.37 — 0.78 — 0.71 — — 60.51 [18] 2009年夏 7.18 5.28 8.14 — — — — — — — [20] 2010.6—9 9.43±2.80 4.02±1.44 2.90±1.06 0.57±0.22 0.20±0.07 0.17±0.09 0.09±0.03 0.07±0.04 0.02±0.01 0.11±0.04 [19] 2013.7 11.39 4.75 5.65 0.37 0.18 0.33 — — — — [21] 2018.5 4.86 1.40 2.89 — — — — — — — [22] 郊区站 2010.6—9 7.23±2.43 2.89±1.62 2.29±0.98 0.39±0.21 0.15±0.10 0.13±0.10 0.08±0.17 0.07±0.04 0.02±0.02 0.06±0.08 [19] 2018.8—9 3.30±2.60 0.85±0.77 1.31±1.27 0.23±0.13 0.40±0.29 0.09±0.04 0.12±0.07 0.18±0.11 0.13±0.09 0.10±0.05 本研究 背景站2) 2010.6—9 3.73±2.46 1.43±0.81 2.36±1.11 0.20±0.12 0.07±0.05 0.04±0.03 0.05±0.04 0.08±0.05 0.01±0.00 0.05±0.03 [19] 沈阳 城市站 2017.8—9 3.89 1.79 2.69 0.26 0.88 — 0.11 0.07 0.07 0.35 [26] 济南 2017.7—9 4.75 1.72 2.33 0.47 0.62 0.25 0.19 0.26 0.12 0.11 [27] 佛山 2015.7 11.94 3.46 2.21 0.18 0.51 0.18 0.11 — — 0.16 [28] 张家界 郊区站 2014.8 3.52 0.53 1.26 — — — — — — — [29] 中国香港 2011.8 2.15 0.50 — 0.09 — — — — — — [30] 奥尔良,法国 2011.6 3.08 1.04 2.00 0.21 — 0.17 0.10 — 0.18 0.09 [31] 1)“—”表示文章中没有相关数据。2)背景站点位于百花山,海拔约1 km.
1) “—” means that there is no relevant data in the article. 2) The background station is located in Baihua Mountain, about 1 km above sea level.表 5 大兴区大气中醛酮类化合物的相关性1)
Table 5. Correlation of carbonyls in the atmosphere in Daxing district
甲醛
Form-A乙醛
Acet-A丙酮
Acetone丙醛
Propion-A丁醛
Butyr-A苯甲醛
Benz-A戊醛
Valeral-A甲基苯
甲醛2)
Tolu-A己醛
Hex-A氮氧化物
NOx一氧化碳
CO风速
Wind
speed甲醛 1.000 乙醛 0.712** 1.000 丙酮 0.139* 0.544** 1.000 丙醛 0.549** 0.723** 0.259** 1.000 丁醛 0.495** 0.712** 0.541** 0.817** 1.000 苯甲醛 0.499** 0.619** 0.377** 0.203 0.375** 1.000 戊醛 0.417** 0.448** 0.253* 0.304** 0.508** 0.491** 1.000 甲基苯甲醛 0.383** 0.521** 0.467** 0.268** 0.546** 0.518** 0.440** 1.000 己醛 0.710** 0.585** 0.058 0.463** 0.379** 0.304** 0.325** 0.226** 1.000 NOx 0.258** 0.247** 0.021 0.089 0.002 0.129 −0.032 0.068 0.358** 1.000 CO 0.480** 0.389** 0.201** 0.288** 0.208** 0.394** 0.146 0.190* 0.327** 0.302** 1.000 风速 −0.214** −0.177** 0.039 −0.104 0.037 −0.018 0.081 −0.044 −0.288** −0.440** −0.328** 1.000 1)**. 相关性在0.01水平显著(双尾);*. 相关性在0.05水平显著(双尾)2) 甲基苯甲醛包括邻甲基苯甲醛和间甲基苯甲醛.
1)**. The correlation was significant at 0.01 level (double tail); *. Correlation was significant at 0.05 level (double tail). 2) Methylbenzaldehyde included o−methylbenzaldehyde and m−methylbenzaldehyde.表 6 不同地区的C1/C2和C2/C3
Table 6. The C1/C2 and C2/C3 in different regions
城市名称
City采样日期
Period采样时间
Time采样频率
FrequencyC1/C2 C2/C3 参考文献
Reference北京市 2018.8.16—9.16 0:00—24:00 2 h 4 4.1 本研究 北京市 2010.6.24
(某个典型污染日)9:00—16:00 3 h 2.4 7.1 [19] 香港 2010.9.28—11.21 7:00—21:00
(臭氧污染天时,
在0:00和凌晨3:00加采两个样)2 h 1.3 —1) [37] 香港 2011.8
(每隔3天采1次)0:00—24:00 6:00—20:00 (白天):2 h
18:00—6:00 (夜间):6 h4.3 5.6 [30] 郑州市 2012.8.8—8.10 0:00—24:00 4 h 2.2 6.6 [38] 上海市 2014.7.28—8.13 7:30—19:30 3 h 2.79 2.15 [39] 张家界市 2014.8.27—8.28、8.30—32 0:00—24:00 4 h 3.29 — [29] 佛山市 2015.6.30—7.5 8:30—10:00 (上午)
14:30—16:00 (下午)
20:30—22:00 (晚上)1.5 h 2.63 15.56 [28] 济南市 2017.9.7—9.29
2018.7.17—8.20:00—24:00 2017年7:00—22:00 (白天):3 h
2017年22:00—6:00 (夜间):8 h
2018年0:00—24:00 (全天):2 h2.8 3.7 [27] 1) “—”表示数据缺失.
1) “—” Indicates missing data.表 7 醛酮类化合物一次源、二次源和其他源的线性回归系数和相对贡献(整个观测期间)
Table 7. Linear regression coefficients and relative contributions of primary, secondary and other sources to the major carbonyls (The whole observation period)
线性回归系数
Linear regression coefficientsβ0 β1 β2 Sig1) 甲醛 0.357 0.005 0.005 0 乙醛 0.135 0.001 0.001 0 丙酮 0.582 0.001 0.003 0.001 不同来源贡献/% 其他源 一次源 二次源 甲醛 11.42% 82.02% 6.55% 乙醛 19.61% 74.45% 5.95% 丙酮 47.74% 42.04`% 10.22% 1)显著值(Sig) < 0.05,表明线性回归系数在95%的置信区间,结果可靠.
1)Significant value (SIG) < 0.05 indicates that the linear regression coefficient is within 95% confidence interval, and the result is reliable.表 8 大兴区大气中醛酮类化合物的臭氧生成潜势 (μg·m−3)
Table 8. The ozone formation potential of carbonyls in the atmosphere in Daxing district (μg·m−3)
化合物
Compounds最大值
Maximum最小值
Minimum平均值
Mean占比/%
Proportion甲醛 107.01 0.66 31.34±23.09 73.98 乙醛 26.19 0.04 5.76±5.07 13.61 丙酮 1.79 0.01 0.48±0.46 1.14 丙醛 4.45 0.27 1.60±0.92 3.78 丁醛 8.04 0.25 2.36±1.72 5.57 苯甲醛 −0.02 −0.16 −0.06±0.03 −0.15 戊醛 1.78 0.20 0.60±0.37 1.43 邻甲基苯甲醛 −0.02 −0.23 −0.10±0.06 −0.25 间甲基苯甲醛 −0.02 −0.29 −0.08±0.05 −0.19 己醛 1.30 0.12 0.46±0.23 1.08 总和 128.59 0.28 40.28±29.55 -
[1] ATKINSON R. Atmospheric chemistry of VOCs and NOx [J]. Atmospheric Environment, 2000, 34(12-14): 2063-2101. doi: 10.1016/S1352-2310(99)00460-4 [2] LARY D J, SHALLCROSS D E. Central role of carbonyl compounds in atmospheric chemistry [J]. Journal of Geophysical Research, 2000, 105(D15): 19771-19778. doi: 10.1029/1999JD901184 [3] CARLIER P, HANNACHI H, MOUVIER G. The chemistry of carbonyl compounds in the atmosphere—A review[J]. 1986, 20 (11): 2079-2099. [4] BARBARA J, FINLAYSON P, JAMES N, et al. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles [J]. Science, 1997, 276(5315): 1045-1051. doi: 10.1126/science.276.5315.1045 [5] WENNBERG P O, HANISCO T F, JAEGLE L, et al. Hydrogen radicals, nitrogen radicals, and the production of O3 in the upper troposphere [J]. Science, 1998, 279(5347): 49-53. doi: 10.1126/science.279.5347.49 [6] WELZ O, SAVEE D J, OSBORN D L, et al. Direct kinetic measurements of Criegee intermediate (CH2OO) formed by reaction of CH2I with O2 [J]. Science, 2012, 335(6065): 204-207. doi: 10.1126/science.1213229 [7] 庞小兵. 大气中醛酮类化合物的观测及其来源的初步研究[D]. 北京: 中国科学院大学, 2007. PANG X B. Long-time measurement and resources analysis of atmospheric carbonyls[D]. Beijing: University of Chinese academy of sciences, 2007(in Chinese).
[8] WENG M L, ZHU L, YANG K, et al. Levels and health risks of carbonyl compounds in selected public places in Hangzhou, China [J]. Journal of Hazardous Materials, 2009, 164(2-3): 700-706. doi: 10.1016/j.jhazmat.2008.08.094 [9] PENG C Y, YANG H H, LAN C H, et al. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust [J]. Atmospheric Environment, 2008, 42(5): 906-915. doi: 10.1016/j.atmosenv.2007.10.016 [10] LIN Y C, WU T Y, OU-YANG W C, et al. Reducing emissions of carbonyl compounds and regulated harmful matters from a heavy-duty diesel engine fueled with paraffinic/biodiesel blends at one low load steady-state condition [J]. Atmospheric Environment, 2009, 43(16): 2642-2647. doi: 10.1016/j.atmosenv.2009.02.007 [11] ANDREW J K, GROSJEAN E, GROSJEAN D, et al. On-road measurement of carbonyls in california light-duty vehicle emissions [J]. Environmental Science & Technology, 2001, 35(21): 4198-4204. [12] THOMAS A B, PAUL B S. Observations of anthropogenic inputs of the isoprene oxidation products methyl vinyl ketone and methacrolein to the atmosphere [J]. Geophysical Research Letters, 1997, 24(11): 1375-1378. doi: 10.1029/97GL01337 [13] FU T M, JACOB D J, WITTROCK F, et al. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols [J]. Journal of Geophysical Research, 2008, 113(D15): 1-17. [14] MONTZKA S A, TRAINER M, GOLDAN P D, et al. Isoprene and its oxidation products, methyl vinyl ketone and methacrolein, in the rural troposphere [J]. Journal of Geophysical Research, 1993, 98(D1): 1101-1111. doi: 10.1029/92JD02382 [15] WANG Z B, LI J X, LIANG L W. Spatio-temporal evolution of ozone pollution and its influencing factors in the Beijing-Tianjin-Hebei Urban Agglomeration [J]. Environ Pollut, 2020, 256: 113419. [16] WANG B, LEE S C, HO K F. Characteristics of carbonyls: Concentrations and source strengths for indoor and outdoor residential microenvironments in China [J]. Atmospheric Environment, 2007, 41(13): 2851-2861. doi: 10.1016/j.atmosenv.2006.11.039 [17] 徐竹, 庞小兵, 牟玉静. 北京市大气和降雨中醛酮化合物的污染研究 [J]. 环境科学学报, 2006, 26(12): 1948-1954. doi: 10.3321/j.issn:0253-2468.2006.12.003 XU Z, PANG X B, MU Y J. Measurement of carbonyl compounds in Beij ing amb ient air and rain [J]. Acta Scientiae Circumstantiae, 2006, 26(12): 1948-1954(in Chinese). doi: 10.3321/j.issn:0253-2468.2006.12.003
[18] XU Z, LIU J F, ZHANG Y J, et al. Ambient levels of atmospheric carbonyls in Beijing during the 2008 Olympic Games [J]. Journal of Environmental Sciences, 2010, 22(9): 1348-1356. doi: 10.1016/S1001-0742(09)60261-8 [19] 王琴, 邵敏, 魏强, 等. 北京及周边地区大气羰基化合物的时空分布特征初探 [J]. 环境科学, 2011, 32(12): 3522-3530. WANG Q, SHAO M, WEI Q, et al. Spatial and temporal variations of ambient carbonyl compounds in beijing and its surrounding areas [J]. Environmental Science, 2011, 32(12): 3522-3530(in Chinese).
[20] ZHANG Y J, MU Y J, LIU J F, et al. Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China [J]. Journal of Environmental Sciences, 2012, 24(1): 124-130. doi: 10.1016/S1001-0742(11)60735-3 [21] RAO Z H, CHEN Z M, LIANG H, et al. Carbonyl compounds over urban Beijing: Concentrations on haze and non-haze days and effects on radical chemistry [J]. Atmospheric Environment, 2016, 124(2016): 207-216. [22] 张鑫, 李红, 张成龙, 等. 环境空气中醛酮类化合物检测方法优化与初步应用 [J]. 环境科学研究, 2019, 32(5): 821-829. ZHANG X, LI H, ZHANG C L, et al. Optimization and preliminary application of the detection method of carbonyl compounds in the ambient air [J]. Research of Environmental Sciences, 2019, 32(5): 821-829(in Chinese).
[23] EPA/625/R-96/010b, Compendium of Methods for the Determination of Toxic Organic Compoundsin Ambient Air. In Compendium Method TO-11A[S]. [24] 马卓标. 我国北方典型地区大气臭氧污染成因诊断分析研究[D]. 北京: 中国科学院大学, 2019. MA Z B. Diagnostic analysis of the causes of atmospheric ozone pollution in typical areas of northern China[D]. Beijing: University of Chinese Academy of Sciences, 2019(in Chinese).
[25] GB 3095-2012, 环境空气质量标准[S]. GB 3095-2012, Ambient air quality standards[S].
[26] MA Z B, LIU C T, ZHANG C L, et al. The levels, sources and reactivity of volatile organic compounds in a typical urban area of Northeast China [J]. Journal of Environmental Sciences, 2019, 79(2019): 121-134. [27] 张崇旭. 京津冀污染传输通道大气醛酮化合物的污染特征、来源及反应活性研究[D]. 山东: 山东建筑大学, 2019. ZHANG C X. Pollution characteristics, sources and reactivity of atmospheric carbonyl compounds in the Beijing-Tianjin-Hebei air pollution transmission channel area[D]. Shandong: Shandong Jianzhu University, 2019 (in Chinese).
[28] 周雪明, 谭吉华, 萍 项, 等. 佛山市冬夏季羰基化合物污染特征 [J]. 中国环境科学, 2017, 37(3): 844-850. ZHOU X M, TAN J H, PING X, et al. Chemical characteristics of atmospheric carbonyls in winter and summer in Foshan City [J]. China Environmental Science, 2017, 37(3): 844-850(in Chinese).
[29] 蒋朝晖, 王玉娇, 郑玄, 等. 张家界森林大气中醛酮类化合物浓度变化特征 [J]. 环境科学研究, 2016, 29(9): 1272-1278. JIANG C H, WANG Y J, ZHENG X, et al. Variation characteristics of atmospheric carbonyl compounds in Zhangjiajie Forest [J]. Research of Environmental Sciences, 2016, 29(9): 1272-1278(in Chinese).
[30] CHENG Y, LEE S C, HUANG Y, et al. Diurnal and seasonal trends of carbonyl compounds in roadside, urban, and suburban environment of Hong Kong [J]. Atmospheric Environment, 2014, 89(2014): 43-51. [31] JIANG Z H, GROSSELIN B, DAELE V, et al. Seasonal, diurnal and nocturnal variations of carbonyl compounds in the semi-urban environment of Orleans, France [J]. Journal of Environmental Sciences, 2016, 40(2016): 84-91. [32] 王韵杰, 张少君, 郝吉明. 中国大气污染治理: 进展·挑战·路径 [J]. 环境科学研究, 2019, 32(10): 1755-1762. WANG Y J, ZHANG S J, HAO J M. Air pollution control in China: progress, challenges and future pathways [J]. Research of Environmental Sciences, 2019, 32(10): 1755-1762(in Chinese).
[33] 高文康, 唐贵谦, 吉东生, 等. 2013-2014年《大气污染防治行动计划》实施效果及对策建议 [J]. 环境科学研究, 2016, 29(11): 1567-1574. GAO W K, TANG G Q, JI D S, et al. Implementation effects and countemeasures of China's Air Pollution Prevention and Control Action Plan [J]. Research of Environmental Sciences, 2016, 29(11): 1567-1574(in Chinese).
[34] KIM K H, HONG Y J, PAL R, et al. Investigation of carbonyl compounds in air from various industrial emission sources [J]. Chemosphere, 2008, 70(5): 807-820. doi: 10.1016/j.chemosphere.2007.07.025 [35] WANG H K, HUANG C H, CHEN K S, et al. Measurement and source characteristics of carbonyl compounds in the atmosphere in Kaohsiung city, Taiwan [J]. Journal of Hazardous Materials, 2010, 179(2019): 1115-1121. [36] EPA 749-F-95-005a, Office of Pollution Prevention and Toxics: Butyraldehyde Fact Sheet: Support Document. (CAS No. 123-72-8)[S]. [37] LING Z H, GUO H, CHEN G X, et al. Formaldehyde and Acetaldehyde at different elevations in mountainous areas in Hong Kong [J]. Aerosol and Air Quality Research, 2016, 16(8): 1868-1878. doi: 10.4209/aaqr.2015.09.0571 [38] 王玲玲, 王维思, 赵新娜, 等. 郑州市不同季节空气中醛酮类化合物污染特征及来源 [J]. 中国环境监测, 2014, 30(5): 35-40. doi: 10.3969/j.issn.1002-6002.2014.05.008 WANG L L, WANG W S, ZHAO X N, et al. Pollution characteristics and sources of carbonyl compounds in Zhengzhou ambient air of winter and summer [J]. Environmental Monitoring in China, 2014, 30(5): 35-40(in Chinese). doi: 10.3969/j.issn.1002-6002.2014.05.008
[39] 景盛翱. 上海市典型区域大气羰基化合物水平研究 [J]. 环境污染与防治, 2017, 39(7): 713-716. JING S A. Study on the level of ambient carbonyl compounds in typical regions of Shanghai [J]. Environmental Pollution & Control, 2017, 39(7): 713-716(in Chinese).
[40] SHEPSON P B, HASTIE D R, SCHIFF H I, et al. Atmospheric concentrations and temporal variations of C1-C3 carbonyl compounds at two rural sites in central ontario [J]. Atmospheric Environment, 1991, 25(9): 2001-2015. doi: 10.1016/0960-1686(91)90280-K [41] 吕辉雄, 蔡全英. 大气中羰基化合物的研究进展 [J]. 生态环境学报, 2009, 18(4): 335-341. LV H X, CAI Q Y. Progresses on the research of carbonyl compounds in atmosphere [J]. Ecology and Environmental Sciences, 2009, 18(4): 335-341(in Chinese).
[42] GROSJEAN D. Formaldehyde and other carbonyls in Los Angeles ambient air [J]. Environ Sci Technol, 1982, 16(5): 254-262. doi: 10.1021/es00099a005 [43] DANIEL J J, STEVEN C W. Photochemistry of biogenic emissions over the Amazon forest [J]. Journal of Geophysical Research, 1988, 93(D2): 1477-1486. doi: 10.1029/JD093iD02p01477 [44] POSSANZINI M, DI PALO V, PETRICCA M, et al. Measurements of lower carbonyls in Rome ambient air [J]. Atmospheric Environment, 1996, 30(22): 3757-3764. doi: 10.1016/1352-2310(96)00110-0 [45] 冯艳丽, 陈颖军, 文晟, 等. 广州东站室内停车场空气中羰基化合物调查 [J]. 环境污染与防治, 2006, 28(11): 863-875. doi: 10.3969/j.issn.1001-3865.2006.11.017 FENG Y L, CHEN Y J, WEN S, at al. A survery of carbonyl compounds in the indoor parking lot in the east rail way station of Guangzhou [J]. Environmental Pollution and control, 2006, 28(11): 863-875(in Chinese). doi: 10.3969/j.issn.1001-3865.2006.11.017
[46] ZHANG X S, MU Y J, SONG W Z, et al. Seasonal variations of isoprene emissions from deciduous trees [J]. Atmospheric Environment, 2000, 23(2000): 3027-3032. [47] PANG X B, MU Y J, LEE X Q, et al. Influences of characteristic meteorological conditions on atmospheric carbonyls in Beijing, China [J]. Atmospheric Research, 2009, 93(4): 913-919. doi: 10.1016/j.atmosres.2009.05.001 [48] 杨雪. 华北典型地区大气羰基化合物污染特征、来源及对光化学污染的影响[D]. 济南: 山东大学, 2018. YANG X. Characteristics and source of carbonyls and effects on photochemistry polluton in North China Plain[D]. Jinan: Shandong University, 2018 (in Chinese).
[49] GARCIA A R, VOLKAMER R, MOLINA L T, et al. Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers [J]. Atmospheric Chemistry and Physics, 2006, 6: 4545-4557. doi: 10.5194/acp-6-4545-2006 [50] LI Y, SHAO M, LU S H, et al. Variations and sources of ambient formaldehyde for the 2008 Beijing Olympic games [J]. Atmospheric Environment, 2010, 44(2010): 2632-2639. [51] YANG X, XUE L K, YAO L, et al. Carbonyl compounds at Mount Tai in the North China Plain: Characteristics, sources, and effects on ozone formation [J]. Atmospheric Research, 2017, 196(2017): 53-61. [52] POSSANZINI M, DI-PALO V, CECINATO A. Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air [J]. Atmospheric Environment, 2002, 36(2002): 3195-3201. [53] GUO S J, CHEN M, TAN J H. Seasonal and diurnal characteristics of atmospheric carbonyls in Nanning, China [J]. Atmospheric Research, 2016, 169(2016): 46-53. [54] DUAN J C, TAN J H, YANG L, et al. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing [J]. Atmospheric Research, 2008, 88(1): 25-35. doi: 10.1016/j.atmosres.2007.09.004 [55] WILLIAM P L C. Development of ozone reactivity scales for volatile organic compounds [J]. Air & Waste, 2012, 44(7): 881-899.